cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376133 Triangle T read by rows: T(n, 1) = (2*n*n - 4*n + 7 + (-1)^n) / 4 and T(n, k) = T(n, k-1) + (-1)^k * 2 * (n+1-k) for k >= 2.

Original entry on oeis.org

1, 2, 4, 3, 7, 5, 6, 12, 8, 10, 9, 17, 11, 15, 13, 14, 24, 16, 22, 18, 20, 19, 31, 21, 29, 23, 27, 25, 26, 40, 28, 38, 30, 36, 32, 34, 33, 49, 35, 47, 37, 45, 39, 43, 41, 42, 60, 44, 58, 46, 56, 48, 54, 50, 52, 51, 71, 53, 69, 55, 67, 57, 65, 59, 63, 61, 62, 84, 64, 82, 66, 80, 68, 78, 70, 76, 72, 74
Offset: 1

Views

Author

Werner Schulte, Sep 11 2024

Keywords

Comments

Row n consists of the next n odd/even natural numbers if n is odd/even. So the sequence yields a permutation of the natural numbers.

Examples

			Row n=5: Next (1,3,5,7 see rows 1 and 3) five odd numbers are 9,11,13,15 and 17; with "9+8-6+4-2" we get 9,17,11,15,13 for row 5.
Row n=8: Next (2,4,..,24 see rows 2, 4 and 6) eight even numbers are 26,28,..,40; with "26+14-12+10-8+6-4+2" we get 26,40,28,38,30,36,32,34 for row 8.
Triangle T(n, k) for 1 <= k <= n starts:
n\ k :   1   2   3   4   5   6   7   8   9  10  11  12
======================================================
   1 :   1
   2 :   2   4
   3 :   3   7   5
   4 :   6  12   8  10
   5 :   9  17  11  15  13
   6 :  14  24  16  22  18  20
   7 :  19  31  21  29  23  27  25
   8 :  26  40  28  38  30  36  32  34
   9 :  33  49  35  47  37  45  39  43  41
  10 :  42  60  44  58  46  56  48  54  50  52
  11 :  51  71  53  69  55  67  57  65  59  63  61
  12 :  62  84  64  82  66  80  68  78  70  76  72  74
  etc.
		

Crossrefs

Cf. A061925 (column 1), A074148 (column 2), A074149 (row sums), A236283 (main diagonal).

Programs

  • Maple
    T := (n, k) -> ((-1)^k*(2 + 4*(n - k)) + 2*n^2 + (-1)^n + 5)/4:
    seq(seq(T(n, k), k = 1..n), n = 1..12);  # Peter Luschny, Sep 13 2024
  • PARI
    T(n,k)=(2*n*n+(-1)^k*4*(n-k)+5+2*(-1)^k+(-1)^n)/4

Formula

T(n, k) = (2*n*n + (-1)^k * 4 * (n - k) + 5 + 2 * (-1)^k + (-1)^n) / 4.
T(n, 1) = (2*n*n - 4*n + 7 + (-1)^n) / 4 = A061925(n-1).
T(n, 2) = (2*n*n + 4*n - 1 + (-1)^n) / 4 = A074148(n) for n > 1.
T(n, k) = T(n, k-2) - (-1)^k * 2 for 3 <= k <= n.
G.f.: x*y*(1 + 2*x*y + 2*x^5*y^2 + x^6*y^3 - x^4*y*(3 + y + y^2) - x^2*(1 + y + 3*y^2) + 2*x^3*(1 + y^3))/((1 - x)^3*(1 + x)*(1 - x*y)^3*(1 + x*y)). - Stefano Spezia, Sep 12 2024