cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376146 E.g.f. satisfies A(x) = exp( x * (1+x)^4 * A(x) ).

Original entry on oeis.org

1, 1, 11, 124, 1997, 42616, 1120327, 35203960, 1288741337, 53898829408, 2536932089771, 132770439164584, 7649993702503429, 481295935534882768, 32834728249861856879, 2414570451161244199576, 190412665638185073399473, 16030575396743899522805440
Offset: 0

Views

Author

Seiichi Manyama, Sep 11 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x*(1+x)^4))))

Formula

E.g.f.: exp( -LambertW(-x * (1+x)^4) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(4*k,n-k)/k!.

A378016 E.g.f. satisfies A(x) = (1+x) * exp( x * (1+x)^2 * A(x) ).

Original entry on oeis.org

1, 2, 11, 115, 1617, 30241, 701923, 19517975, 633387905, 23513238865, 983268873891, 45750603668815, 2344878934878769, 131285573039583977, 7973124098907905603, 522086636316439329511, 36669284618683152764289, 2750044026126526125774625, 219342360538110975815216323
Offset: 0

Views

Author

Seiichi Manyama, Nov 14 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((1+x)*exp(-lambertw(-x*(1+x)^3))))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(3*k+1, n-k)/k!);

Formula

E.g.f.: (1+x) * exp( -LambertW(-x * (1+x)^3) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(3*k+1,n-k)/k!.

A378017 E.g.f. satisfies A(x) = (1+x)^2 * exp( x * (1+x) * A(x) ).

Original entry on oeis.org

1, 3, 15, 148, 2077, 38326, 883369, 24431436, 789531705, 29213730010, 1218401262541, 56566561281616, 2893886178904549, 161768999193007974, 9811122121462081281, 641683497800057913556, 45022670799746182036465, 3373421864644139722767538, 268843153008388446079159573
Offset: 0

Views

Author

Seiichi Manyama, Nov 14 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace((1+x)^2*exp(-lambertw(-x*(1+x)^3))))
    
  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(k-1)*binomial(3*k+2, n-k)/k!);

Formula

E.g.f.: (1+x)^2 * exp( -LambertW(-x * (1+x)^3) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(3*k+2,n-k)/k!.
Showing 1-3 of 3 results.