cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A376530 G.f. A(x) = (1/3) * Sum_{n>=0} Product_{k=0..2*n} (x^k + x^n + x^(2*n-k)).

Original entry on oeis.org

1, 1, 2, 3, 3, 3, 5, 6, 10, 11, 15, 15, 18, 20, 25, 30, 38, 47, 57, 67, 78, 89, 100, 111, 128, 144, 168, 191, 227, 260, 305, 347, 403, 451, 514, 571, 644, 710, 795, 881, 989, 1099, 1237, 1384, 1559, 1746, 1963, 2196, 2457, 2733, 3044, 3369, 3729, 4107, 4529, 4975, 5473, 6003, 6605, 7243, 7973
Offset: 0

Views

Author

Paul D. Hanna, Sep 27 2024

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 3*x^4 + 3*x^5 + 5*x^6 + 6*x^7 + 10*x^8 + 11*x^9 + 15*x^10 + 15*x^11 + 18*x^12 + 20*x^13 + 25*x^14 + 30*x^15 + 38*x^16 + 47*x^17 + 57*x^18 + 67*x^19 + 78*x^20 + ...
where
A(x) = 1  +  (1 + x + x^2)*(x)*(x^2 + x + 1)  +  (1 + x^2 + x^4)*(x + x^2 + x^3)*(x^2)*(x^3 + x^2 + x)*(x^4 + x^2 + 1)  +  (1 + x^3 + x^6)*(x + x^3 + x^5)*(x^2 + x^3 + x^4)*(x^3)*(x^4 + x^3 + x^2)*(x^5 + x^3 + x)*(x^6 + x^3 + 1)  +  (1 + x^4 + x^8)*(x + x^4 + x^7)*(x^2 + x^4 + x^6)*(x^3 + x^4 + x^5)*(x^4)*(x^5 + x^4 + x^3)*(x^6 + x^4 + x^2)*(x^7 + x^4 + x)*(x^8 + x^4 + 1)  +  (1 + x^5 + x^10)*(x + x^5 + x^9)*(x^2 + x^5 + x^8)*(x^3 + x^5 + x^7)*(x^4 + x^5 + x^6)*(x^5)*(x^6 + x^5 + x^4)*(x^7 + x^5 + x^3)*(x^8 + x^5 + x^2)*(x^9 + x^5 + x)*(x^10 + x^5 + 1) + ...
Also,
A(x) = 1  +  x*(1 + x + x^2)^2  +  x^2*(1 + x^2 + x^4)^2*(x + x^2 + x^3)^2  +  x^3*(1 + x^3 + x^6)^2*(x + x^3 + x^5)^2*(x^2 + x^3 + x^4)^2  +  x^4*(1 + x^4 + x^8)^2*(x + x^4 + x^7)^2*(x^2 + x^4 + x^6)^2*(x^3 + x^4 + x^5)^2  +  x^5*(1 + x^5 + x^10)^2*(x + x^5 + x^9)^2*(x^2 + x^5 + x^8)^2*(x^3 + x^5 + x^7)^2*(x^4 + x^5 + x^6)^2 + ...
SPECIFIC VALUES.
A(t) = 7 at t = 0.66668704736936585046859672241821389017558257705439339...
A(t) = 6 at t = 0.64513809385910573788372368634772347751697803188552164...
A(t) = 5 at t = 0.61639010238633204213526430692013003520814209008383800...
A(t) = 4 at t = 0.57545188136244196253678514659912022278976129786049251...
A(t) = 3 at t = 0.51093469574142600352566002004049869356160992832828805...
A(t) = 2 at t = 0.38925040919555545279428903616909363335667114006118874...
A(4/5) = 33.86295094486999840248628061724081807284197309832190750...
A(3/4) = 15.71390570183068296805142809300098703963996686273128437...
A(2/3) = 6.998922814611911009050207691553160959950411531472265898...
A(3/5) = 4.551745873136373778485262039216993578932737039944687958...
A(1/2) = 2.87450225671651109577680741009657439874438592581613285485257...
where A(1/2) = 1 + 7^2/2^5 + 147^2/2^16 + 10731^2/2^33 + 2929563^2/2^56 + 3096548091^2/2^85 + 12884736606651^2/2^120 + 212765655585627963^2/2^161 + 13998490777945220569659^2/2^208 + ... + A376227(n)^2/2^(n*(3*n+2)) + ..., where A376227(n) = Product_{k=1..n} (1 + 2^k + 2^(2*k)).
A(2/5) = 2.062036845797808963480254546496778756663866279595140073...
A(1/3) = 1.728128514830894263417956669231253604769749542061786338...
A(1/4) = 1.438324287250845860310741641820056491309903730120221376...
A(1/5) = 1.310189970721194144762503370434773514855060963388422496...
		

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(k^2)*Product[1 + x^j + x^(2*j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 28 2024 *)
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k + x^(2*k))*(1 + x^k + x^(2*k)) * x^(2*k-1)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Oct 08 2024 *)
  • PARI
    {a(n) = my(A = (1/3)*sum(m=0,n, prod(k=0,2*m, x^k + x^m + x^(2*m-k) +x*O(x^n)))); polcoeff(A,n)}
    for(n=0,60, print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n may be defined by the following formulas.
(1) A(x) = (1/3) * Sum_{n>=0} Product_{k=0..2*n} (x^k + x^n + x^(2*n-k)).
(2) A(x) = Sum_{n>=0} x^n * Product_{k=0..n-1} (x^k + x^n + x^(2*n-k))^2.
(3) A(x) = (1/3) * Sum_{n>=0} x^(n*(2*n+1)) * Product_{k=0..2*n} (1 + x^(n-k) + x^(2*n-2*k)).
(4) A(x) = (1/3) * Sum_{n>=0} x^(n*(2*n+1)) * Product_{k=0..2*n} (1/x^(n-k) + 1 + x^(n-k)).
(5) A(x) = (1/3) * Sum_{n>=0} x^(n*(2*n+1)) * Product_{k=0..2*n} (1 + 1/x^(n-k) + 1/x^(2*n-2*k)).
(6) A(x) = (1/3) * Sum_{n>=0} x^(2*n*(2*n+1)) * Product_{k=0..2*n} (1/x^k + 1/x^n + 1/x^(2*n-k)).
From Paul D. Hanna, Oct 09 2024: (Start)
(7) A(x) = Sum_{n>=0} x^(n^2) * Product_{k=1..n} (1 - x^(3*k))^2 / (1 - x^k)^2.
(8) A(x) = Sum_{n>=0} x^(n^2) * Product_{k=1..n} (1 + x^k + x^(2*k))^2.
(End)
a(n) ~ c * d^sqrt(n) / sqrt(n), where d = A376152 = 4.9880208766009... and c = sqrt(1/54 + 5*cosh(arccosh(7*sqrt(11/2)/16)/3)/(27*sqrt(22))) = 0.241068202175... - Vaclav Kotesovec, Sep 28 2024, updated Oct 09 2024
Showing 1-1 of 1 results.