cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376152 Decimal expansion of a constant related to the asymptotics of A376530.

Original entry on oeis.org

4, 9, 8, 8, 0, 2, 0, 8, 7, 6, 6, 0, 0, 9, 0, 3, 8, 0, 5, 3, 3, 5, 2, 2, 4, 4, 6, 0, 7, 9, 0, 7, 7, 3, 0, 5, 0, 8, 3, 2, 0, 3, 8, 1, 5, 6, 0, 9, 1, 6, 8, 7, 9, 6, 2, 3, 8, 7, 4, 4, 4, 9, 9, 1, 9, 1, 9, 5, 5, 2, 9, 6, 5, 3, 4, 2, 1, 0, 1, 1, 8, 3, 9, 2, 4, 3, 7, 9, 6, 0, 7, 2, 5, 7, 7, 9, 8, 0, 7, 3, 9, 0, 8, 5, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 09 2024

Keywords

Examples

			4.988020876600903805335224460790773050832038156091687962387444991919...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^(2*Sqrt[Log[r]^2 + 2*PolyLog[2, 1-r] - 2*PolyLog[2, 1-r^3]/3]) /. r -> (-1 - 2/(17 + 3*Sqrt[33])^(1/3) + (17 + 3*Sqrt[33])^(1/3))/3, 10, 120][[1]]

Formula

Equals limit_{n->infinity} A376530(n)^(1/sqrt(n)).
Equals exp(2*sqrt(log(r)^2 + 2*polylog(2, 1-r) - 2*polylog(2, 1-r^3)/3)), where r = A192918 = 0.54368901269207636157085597180174... is the real root of the equation r^2 * (1-r^3)^2 = (1-r)^2.

A376542 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^(2*j))^2.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 2, 0, 3, 1, 4, 2, 3, 3, 2, 6, 2, 7, 2, 8, 3, 10, 6, 8, 9, 8, 12, 8, 16, 6, 20, 8, 22, 10, 24, 14, 27, 20, 26, 26, 25, 34, 26, 42, 25, 51, 26, 58, 31, 66, 36, 72, 43, 76, 56, 82, 70, 82, 86, 84, 106, 87, 124, 90, 145, 95, 168, 102, 187, 115, 206
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(k^2)*Product[1+x^(2*j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ A369557(n) / 4.

A376227 a(n) = Product_{k=1..n} (8^k - 1)/(2^k - 1) for n >= 1 with a(0) = 1.

Original entry on oeis.org

1, 7, 147, 10731, 2929563, 3096548091, 12884736606651, 212765655585627963, 13998490777945220569659, 3676801592262757799164923963, 3859174628040582848761303356488763, 16194459027901983959148041623911690081339, 271764285812898926139442499827890355613945218107
Offset: 0

Views

Author

Paul D. Hanna, Oct 09 2024

Keywords

Examples

			G.f.: A(x) = 1 + 7*x + 147*x^2 + 10731*x^3 + 2929563*x^4 + 3096548091*x^5 + 12884736606651*x^6 + 212765655585627963*x^7 + ...
where the coefficients a(n) of x^n begin
a(0) = 1,
a(1) = 1 * 7,
a(2) = 1 * 7 * 21,
a(3) = 1 * 7 * 21 * 73,
a(4) = 1 * 7 * 21 * 73 * 273,
a(5) = 1 * 7 * 21 * 73 * 273 * 1057,
...
		

Crossrefs

Programs

  • PARI
    {a(n) = (1/3) * prod(k=0,n, 1 + 2^k + 2^(2*k))}
    for(n=0,12,print1(a(n),", "))

Formula

G.f. A(x) = 1/(1 - 7*x/(1 + 7*x - 21*x/(1 + 21*x - 73*x/(1 + 73*x - 273*x/(1 + 273*x - 1057*x/(1 + 1057*x - 4161*x/(1 + ...))))))), a continued fraction.
a(n) = Product_{k=1..n} (1 + 2^k + 2^(2*k)) for n >= 1 with a(0) = 1.
a(n) = 2^(n*(n+1)/2) * Product_{k=1..n} (1/2^k + 1 + 2^k) for n >= 1.
a(n) ~ c * 2^(n*(n+1)) where c = Product_{n>=1} (1 + 1/2^n + 1/4^n) = 2.975905201850451176749639540825805061981174...
Showing 1-3 of 3 results.