cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A068781 Lesser of two consecutive numbers each divisible by a square.

Original entry on oeis.org

8, 24, 27, 44, 48, 49, 63, 75, 80, 98, 99, 116, 120, 124, 125, 135, 147, 152, 168, 171, 175, 188, 207, 224, 242, 243, 244, 260, 275, 279, 288, 296, 315, 324, 332, 342, 343, 350, 351, 360, 363, 368, 375, 387, 404, 423, 424, 440, 459, 475, 476, 495, 507, 512
Offset: 1

Views

Author

Robert G. Wilson v, Mar 04 2002

Keywords

Comments

Also numbers m such that mu(m)=mu(m+1)=0, where mu is the Moebius-function (A008683); A081221(a(n))>1. - Reinhard Zumkeller, Mar 10 2003
The sequence contains an infinite family of arithmetic progressions like {36a+8}={8,44,80,116,152,188,...} ={4(9a+2)}. {36a+9} provides 2nd nonsquarefree terms. Such AP's can be constructed to any term by solution of a system of linear Diophantine equation. - Labos Elemer, Nov 25 2002
1. 4k^2 + 4k is a member for all k; i.e., 8 times a triangular number is a member. 2. (4k+1) times an odd square - 1 is a member. 3. (4k+3) times odd square is a member. - Amarnath Murthy, Apr 24 2003
The asymptotic density of this sequence is 1 - 2/zeta(2) + Product_{p prime} (1 - 2/p^2) = 1 - 2 * A059956 + A065474 = 0.1067798952... (Matomäki et al., 2016). - Amiram Eldar, Feb 14 2021
Maximum of the n-th maximal anti-run of nonsquarefree numbers (A013929) differing by more than one. For runs instead of anti-runs we have A376164. For squarefree instead of nonsquarefree we have A007674. - Gus Wiseman, Sep 14 2024

Examples

			44 is in the sequence because 44 = 2^2 * 11 and 45 = 3^2 * 5.
From _Gus Wiseman_, Sep 14 2024: (Start)
Splitting nonsquarefree numbers into maximal anti-runs gives:
  (4,8)
  (9,12,16,18,20,24)
  (25,27)
  (28,32,36,40,44)
  (45,48)
  (49)
  (50,52,54,56,60,63)
  (64,68,72,75)
  (76,80)
  (81,84,88,90,92,96,98)
  (99)
The maxima are a(n). The corresponding pairs are (8,9), (24,25), (27,28), (44,45), etc.
(End)
		

Crossrefs

Subsequence of A261869.
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A053797 gives lengths of runs of nonsquarefree numbers, firsts A373199.

Programs

  • Haskell
    a068781 n = a068781_list !! (n-1)
    a068781_list = filter ((== 0) . a261869) [1..]
    -- Reinhard Zumkeller, Sep 04 2015
    
  • Mathematica
    Select[ Range[2, 600], Max[ Transpose[ FactorInteger[ # ]] [[2]]] > 1 && Max[ Transpose[ FactorInteger[ # + 1]] [[2]]] > 1 &]
    f@n_:= Flatten@Position[Partition[SquareFreeQ/@Range@2000,n,1], Table[False,{n}]]; f@2 (* Hans Rudolf Widmer, Aug 30 2022 *)
    Max/@Split[Select[Range[100], !SquareFreeQ[#]&],#1+1!=#2&]//Most (* Gus Wiseman, Sep 14 2024 *)
  • PARI
    isok(m) = !moebius(m) && !moebius(m+1); \\ Michel Marcus, Feb 14 2021

Formula

A261869(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2015

A375707 First differences minus 1 of nonsquarefree numbers.

Original entry on oeis.org

3, 0, 2, 3, 1, 1, 3, 0, 1, 0, 3, 3, 3, 3, 0, 2, 0, 0, 1, 1, 1, 3, 2, 0, 3, 3, 2, 0, 3, 0, 2, 3, 1, 1, 3, 1, 0, 0, 3, 3, 3, 3, 0, 2, 0, 2, 0, 0, 1, 3, 2, 0, 3, 3, 2, 0, 1, 1, 0, 2, 3, 1, 1, 3, 0, 1, 0, 2, 0, 3, 3, 3, 0, 2, 3, 1, 1, 3, 2, 0, 3, 3, 3, 3, 0, 2, 3
Offset: 1

Views

Author

Gus Wiseman, Sep 16 2024

Keywords

Comments

Also the number of squarefree numbers between the nonsquarefree numbers A013929(n) and A013929(n+1).
Delete all 0's to get A120992.
The image is {0,1,2,3}.
Add 1 to all terms for A078147.

Examples

			The runs of squarefree numbers begin:
  (5,6,7)
  ()
  (10,11)
  (13,14,15)
  (17)
  (19)
  (21,22,23)
  ()
  (26)
  ()
  (29,30,31)
  (33,34,35)
		

Crossrefs

Positions of 0, 1, 2, 3 are A375709, A375710, A375711, A375712. This is a set partition of the positive integers into four blocks.
For runs of squarefree numbers:
- length: A120992, anti A373127
- min: A072284, anti A373408
- max: A373415, anti A007674
- sum: A373413, anti A373411
For runs of nonsquarefree numbers:
- length: A053797, anti A373409
- min: A053806, anti A373410
- max: A376164, anti A068781
- sum: A373414, anti A373412
A005117 lists the squarefree numbers, first differences A076259.
A013929 lists the nonsquarefree numbers, first differences A078147.
A046933 counts composite numbers between consecutive primes.
A073784 counts primes between consecutive composite numbers.
A093555 counts non-prime-powers between consecutive prime-powers.

Programs

  • Mathematica
    Differences[Select[Range[100],!SquareFreeQ[#]&]]-1
  • PARI
    lista(nmax) = {my(prev = 4); for (n = 5, nmax, if(!issquarefree(n), print1(n - prev - 1, ", "); prev = n));} \\ Amiram Eldar, Sep 17 2024

Formula

Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = 6/(Pi^2-6) = 1.550546... . - Amiram Eldar, Sep 17 2024
Showing 1-2 of 2 results.