A376272 Elated numbers: numbers whose trajectory under iteration of the A376270 map includes 1.
1, 10, 13, 21, 43, 51, 67, 77, 88, 92, 97, 100, 103, 117, 124, 130, 142, 155, 171, 201, 210, 226, 237, 256, 262, 265, 273, 319, 322, 337, 356, 365, 373, 391, 403, 430, 438, 483, 501, 510, 514, 541, 556, 565, 579, 588, 597, 607, 616, 639, 661, 668, 670, 686, 693, 699, 707, 717, 724, 742, 746
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- N. Bradley Fox et al., Elated Numbers, arXiv:2409.09863 [math.NT], 2024.
Programs
-
Maple
b:= proc(n) b(n):= (l-> l[-1]*add(i^2, i=l))(convert(n, base, 10)) end: q:= proc(n) option remember; local k, s; k, s:= n, {}; while not (k=1 or k in s) do s, k:= {s[], k}, b(k) od: is(k=1) end: select(q, [$1..1000])[]; # Alois P. Heinz, Sep 18 2024
-
PARI
f(n) = if (n, my(d=digits(n)); d[1]*norml2(d), 0); \\ A376270 isok(n) = my(list=List()); while(1, my(m=f(n)); if (m==1, return(1)); if (#select(x->(x==m), Vec(list)), return(0)); listput(list, m); n=m); 0;
-
Python
def f(n): return (d:=list(map(int, str(n))))[0] * sum(di*di for di in d) def ok(n): if n == 1: return True traj = {n} while (n:=f(n)) not in traj: traj.add(n) return 1 in traj print([k for k in range(750) if ok(k)]) # Michael S. Branicky, Sep 18 2024