A376289 Values k for primitive solutions to k^5 + a^5 + b^5 = c^5 + d^5 + e^5 with k >= a >= b >= 0 and k > c >= d >= e >= 0, repetitions allowed.
66, 67, 74, 83, 107, 118, 119, 123, 136, 142, 152, 155, 169, 170, 181, 182, 186, 201, 204, 215, 216, 224, 229, 233, 234, 248, 258, 264, 274, 282, 283, 286, 288, 289, 293, 294, 307, 310, 310, 328, 331, 348, 364, 364, 373, 377, 378, 394, 399, 413, 417, 420, 421, 425, 426, 430, 430, 433, 436, 448, 459, 470, 474, 480, 486, 490, 498
Offset: 1
Keywords
Examples
67^5 + 28^5 + 24^5 = 62^5 + 54^5 + 3^5 so 67 is a term. 399^5 + 237^5 + 62^5 = 382^5 + 307^5 + 9^5 so 399 is a term. 310^5 + 118^5 + 102^5 = 271^5 + 270^5 + 49^5 and 310^5 + 124^5 + 116^5 = 294^5 + 235^5 + 21^5 so 310 is a repeated term.
Links
- A. Bremner, A geometric approach to equal sums of fifth powers, Number Th. 13, 337-354, 1981.
- Edward Brisse in Jean-Charles Meyrignac Identities Of Equal Sums Of Like Power, Computing Minimal Equal Sums Of Like Powers 2001.
- A. Choudhry and J. Wróblewski, A quintic diophantine equation with applications to two diophantine systems concerning fifth powers, Rocky Mountain J. Math. 43(6): 1893-1899 (2013).
- Andrew Howroyd, Solutions for k <= 500, Oct 2024.
- L. J. Lander, Geometric aspects of diophantine equations involving equal sums of like powers, American Mathematical Monthly Volume 75 no 6-10 1968 pp. 1061-1073
- L. J. Lander, T. R. Parkin, and J. L. Selfridge, A Survey of Equal Sums of Like Powers, Math. Comput. 21, 446-459, 1967 (Table VI).
- A. Moessner, Due sistemi diofantei., Bollettino dell'Unione Matematica Italiana Serie 3 6 (1951), p. 117-118 (Italian) Sezione Scientifica
- Eric Weisstein's World of Mathematics, Diophantine Equation-5th Powers.
- Wikipedia, Euler's sum of powers conjecture.
Programs
-
Mathematica
ww = {}; Monitor[Do[Do[Do[Do[kk = PowersRepresentations[e^5 + d^5 + c^5 - k^5, 2, 5]; If[kk != {},If[GCD[k, c, d, e, kk[[1]][[1]], kk[[1]][[2]]] == 1, AppendTo[ww, k]; Print[k];Print[{k, kk[[1]][[2]], kk[[1]][[1]], c, d, e}]]], {e, 0, d}],{d, 0, c}], {c, 0, k - 1}], {k, 4, 186}], {c, k}];ww
-
PARI
lista(maxk, prfull=0)={for(k=1, maxk, for(a=0, k, for(b=0, a, my(s=k^5+a^5+b^5); for(c=sqrtnint(s\3,5), k-1, for(d=sqrtnint((s-c^5-1)\2,5)+1, min(c, sqrtnint(s-c^5,5)), my(e); if(ispower(s-c^5-d^5,5,&e) && gcd([k,a,b,c,d,e])==1, if(prfull, print([k,a,b,c,d,e]), print1(k, ", ") )) )))))} \\ Andrew Howroyd, Oct 08 2024
Comments