cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376289 Values k for primitive solutions to k^5 + a^5 + b^5 = c^5 + d^5 + e^5 with k >= a >= b >= 0 and k > c >= d >= e >= 0, repetitions allowed.

Original entry on oeis.org

66, 67, 74, 83, 107, 118, 119, 123, 136, 142, 152, 155, 169, 170, 181, 182, 186, 201, 204, 215, 216, 224, 229, 233, 234, 248, 258, 264, 274, 282, 283, 286, 288, 289, 293, 294, 307, 310, 310, 328, 331, 348, 364, 364, 373, 377, 378, 394, 399, 413, 417, 420, 421, 425, 426, 430, 430, 433, 436, 448, 459, 470, 474, 480, 486, 490, 498
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2024

Keywords

Comments

This case is known in literature as 5.3.3 (see e.g. Eric Weisstein's World of Mathematics).
Primitive means a solution has gcd(k,a,b,c,d,e) = 1.
For primitive solutions of the 5.1.5 case see A063923.
For primitive solutions of the 5.2.4 case see A376914.
Although the definition does not require all coefficients to be nonzero or distinct, all known solutions have k > a > b > 0 and c > d > e > 0.
In every known case, k+a+b-c-d-e is even and very often zero.
This sequence is infinite as follows:
1) Bremner's modified one parameter identity (with conditions k+a+b-c-d-e=0 and k-a=c-d):
(37888 + 67978*w + 53683*w^2 + 24217*w^3 + 6750*w^4 + 1164*w^5 + 115*w^6 + 5*w^7)^5+
(15744 + 33046*w + 29861*w^2 + 15193*w^3 + 4738*w^4 + 912*w^5 + 101*w^6 + 5*w^7)^5+
(16376 + 33534*w + 29739*w^2 + 14937*w^3 + 4622*w^4 + 888*w^5 + 99*w^6 + 5*w^7)^5
=
(27912 + 52390*w + 43165*w^2 + 20281*w^3 + 5882*w^4 + 1056*w^5 + 109*w^6 + 5*w^7)^5+
(5768 + 17458*w + 19343*w^2 + 11257*w^3 + 3870*w^4 + 804*w^5 + 95*w^6 + 5*w^7)^5+
(36328 + 64710*w + 50775*w^2 + 22809*w^3 + 6358*w^4 + 1104*w^5 + 111*w^6 + 5*w^7)^5
which generate members of this sequence for nonnegative w=0,1,2,3,...
2) Moessner's one parameter identity (k+a+b-c-d-e=40*n)
(a^36 + 8*a^26 + 12*a^16 + 20*a^11 - a^6)^5+
(a^33 - 12*a^23 - 28*a^13 - a^3)^5+
(a^30 + 20*a^25 - 12*a^20 - 8*a^10 - 1)^5
=
(a^36 + 8*a^26 + 12*a^16 - 20*a^11 - a^6)^5+
(a^33 + 28*a^23 + 12*a^13 - a^3)^5+
(a^30 - 20*a^25 - 12*a^20 - 8*a^10 - 1)^5
which generate members of this sequence for a=2,3,4,...
3) Moessner's two parameter identity (with condition k+a+b-c-d-e=0):
(75*x^7-230*x^6*y-113*x^5*y^2+510*x^4*y^3-407*x^3*y^4+62*x^2*y^5+125*x*y^6-150*y^7)^5+
(-175*x^7+170*x^6*y-391*x^5*y^2-30*x^4*y^3+451*x^3*y^4-602*x^2*y^5+115*x*y^6-50*y^7)^5+
(175*x^7-160*x^6*y+387*x^5*y^2-108*x^4*y^3+5*x^3*y^4-336*x^2*y^5+265*x*y^6-100*y^7)^6
=
(25*x^7-290*x^6*y+689*x^5*y^2-138*x^4*y^3+27*x^3*y^4-62*x^2*y^5+155*x*y^6-150*y^7)^5+
(-25*x^7-653*x^5*y^2+564*x^4*y^3-195*x^3*y^4-208*x^2*y^5+105*x*y^6-100*y^7)^5+
(75*x^7+70*x^6*y-153*x^5*y^2-54*x^4*y^3+217*x^3*y^4-606*x^2*y^5+245*x*y^6-50*y^7)^5
4) Choudhry and Wróblewski two parameter identity:
(2 p^15 q + 6 p^5 q^11)^5 +
(p^16 - 3 p^11 q^5 - 5 p^6 q^10 - p q^15)^5 +
(6 p^11 q^5 + 2 p q^15)^5
= (p^16 + 3 p^11 q^5 - 5 p^6 q^10 + p q^15)^5 +
(p^15 q + 5 p^10 q^6 + 3 p^5 q^11 - q^16)^5 +
(p^15 q - 5 p^10 q^6 + 3 p^5 q^11 + q^16)^5
5) Edward Brisse two parameter identity (with condition k+a+b-c-d-e=0):
(2*a^8*b+10*a^7*b^2-20*a^6*b^3+20*a^5*b^4-34*a^4*b^5-10*a^3*b^6+270*a^2*b^7-20*a*b^8+682*b^9)^5+
(-2*a^8*b+10*a^7*b^2+20*a^6*b^3+20*a^5*b^4+34*a^4*b^5-10*a^3*b^6-270*a^2*b^7-20*a*b^8-682*b^9)^5+
(a^9-22*a^5*b^4-125*a^3*b^6-79*a*b^8)^5
=
(a^8*b+10*a^7*b^2-10*a^6*b^3+20*a^5*b^4-92*a^4*b^5-160*a^3*b^6-15*a^2*b^7-320*a*b^8+341*b^9)^5+
(-a^8*b+10*a^7*b^2+10*a^6*b^3+20*a^5*b^4+92*a^4*b^5-160*a^3*b^6+15*a^2*b^7-320*a*b^8-341*b^9)^5+
(a^9-22*a^5*b^4+175*a^3*b^6+521*a*b^8)^5
When we take b=1 in this identity we obtain the Lander 1968 one parameter identity.

Examples

			67^5 + 28^5 + 24^5 = 62^5 + 54^5 + 3^5 so 67 is a term.
399^5 + 237^5 + 62^5 = 382^5 + 307^5 + 9^5 so 399 is a term.
310^5 + 118^5 + 102^5 = 271^5 + 270^5 + 49^5 and 310^5 + 124^5 + 116^5 = 294^5 + 235^5 + 21^5 so 310 is a repeated term.
		

Crossrefs

Programs

  • Mathematica
    ww = {}; Monitor[Do[Do[Do[Do[kk = PowersRepresentations[e^5 + d^5 + c^5 - k^5, 2, 5];
    If[kk != {},If[GCD[k, c, d, e, kk[[1]][[1]], kk[[1]][[2]]] == 1,
    AppendTo[ww, k]; Print[k];Print[{k, kk[[1]][[2]], kk[[1]][[1]], c, d, e}]]], {e, 0, d}],{d, 0, c}], {c, 0, k - 1}], {k, 4, 186}], {c, k}];ww
  • PARI
    lista(maxk, prfull=0)={for(k=1, maxk, for(a=0, k, for(b=0, a, my(s=k^5+a^5+b^5); for(c=sqrtnint(s\3,5), k-1, for(d=sqrtnint((s-c^5-1)\2,5)+1, min(c, sqrtnint(s-c^5,5)), my(e); if(ispower(s-c^5-d^5,5,&e) && gcd([k,a,b,c,d,e])==1, if(prfull, print([k,a,b,c,d,e]), print1(k, ", ") )) )))))} \\ Andrew Howroyd, Oct 08 2024