A377428
Expansion of e.g.f. (1/x) * Series_Reversion( x*(2 - exp(x))^4 ).
Original entry on oeis.org
1, 4, 56, 1432, 54184, 2734104, 173032680, 13192623448, 1177932112040, 120610734752920, 13935516914366824, 1793837540679492312, 254604546529825454376, 39504947952102355425304, 6652925600854130108675048, 1208610940763303680263653464, 235601431979292206398224418216
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(2-exp(x))^4)/x))
-
a(n) = 4*sum(k=0, n, (4*n+k+3)!*stirling(n, k, 2))/(4*n+4)!;
A376391
Expansion of e.g.f. ( (1/x) * Series_Reversion( x*(2 - exp(x))^3 ) )^(2/3).
Original entry on oeis.org
1, 2, 20, 386, 11252, 441722, 21867764, 1308580226, 91904288420, 7413237414602, 675503178005108, 68631619821747842, 7693344955213551428, 943236099444038389082, 125565496331888560573172, 18037220418654308659836674, 2780985275750966018759898212, 458079154394191702424821932842
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace((serreverse(x*(2-exp(x))^3)/x)^(2/3)))
-
a(n) = 2*sum(k=0, n, (3*n+k+1)!*stirling(n, k, 2))/(3*n+2)!;
A376439
Expansion of e.g.f. (1/x) * Series_Reversion( x*(1 - x^2*(exp(x) - 1))^3 ).
Original entry on oeis.org
1, 0, 0, 18, 36, 60, 23850, 189126, 988008, 184207176, 3254640750, 35132272890, 4418970811596, 134653558474188, 2463781708180338, 246532610826062190, 11098269938629561680, 305828547775319369616, 27016544700449293891158
Offset: 0
-
my(N=20, x='x+O('x^N)); Vec(serlaplace(serreverse(x*(1-x^2*(exp(x)-1))^3)/x))
-
a(n) = 3*n!*sum(k=0, n\3, (3*n+k+2)!*stirling(n-2*k, k, 2)/(n-2*k)!)/(3*n+3)!;
Showing 1-3 of 3 results.