A376411 a(n) is the number of terms less than A276086(n) in the range of A276086, where A276086 is the primorial base exp-function.
0, 1, 2, 4, 6, 13, 3, 7, 11, 21, 32, 64, 18, 36, 54, 108, 162, 325, 90, 180, 271, 541, 812, 1624, 450, 902, 1354, 2707, 4061, 8122, 5, 10, 15, 30, 45, 91, 25, 50, 75, 151, 227, 454, 126, 253, 378, 758, 1137, 2274, 632, 1264, 1895, 3790, 5685, 11370, 3158, 6317, 9475, 18952, 28428, 56856, 35, 70, 106, 212, 318, 637
Offset: 0
Keywords
Links
Crossrefs
Programs
-
PARI
up_to = (2*210)-1; \\ Must be one of the terms of A343048. A276085(n) = { my(f = factor(n), pr=1, i=1, s=0); for(k=1, #f~, while(i <= primepi(f[k, 1])-1, pr *= prime(i); i++); s += f[k, 2]*pr); (s); }; A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; A376411list(up_to) = { my(size=up_to, v=vector(size), m=A276086(size), s=1, j); for(i=2,m,if(!(m%i), j=A276085(i); v[j] = s; print1("i=",i," v[",j,"]=",s", ");); s += A359550(i)); (v); }; v376411 = A376411list(up_to); A376411(n) = if(!n,n,v376411[n]);
-
PARI
\\ For incremental computing, less efficient than above: A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; A359550(n) = { my(pp); forprime(p=2, , pp = p^p; if(!(n%pp), return(0)); if(pp > n, return(1))); }; memoA376411 = Map(); \\ We use k=A276086(n) as our key. kvs will be a list of key-value-pairs sorted into descending order by the key. We search the largest key in it < k, and continue summing from that: A376411(n) = if(n<=2,n,my(v, k=A276086(n)); if(mapisdefined(memoA376411,k,&v), v, my(kvs = vecsort(Mat(memoA376411)~,(x,y) -> sign(y[1]-x[1])), ss=si=0); for(i=1, #kvs, if(kvs[1,i]
A359550(i)); mapput(memoA376411,k,v); (v)));
Comments