cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A376474 E.g.f. satisfies A(x) = exp( x^2*A(x)^2 / (1 - x*A(x)) ).

Original entry on oeis.org

1, 0, 2, 6, 84, 840, 14160, 246960, 5438160, 132209280, 3696265440, 114042297600, 3898083752640, 145315002792960, 5886559994515200, 257081021880883200, 12051082491262214400, 603307920100773888000, 32132914081702520486400, 1814085935013542141952000, 108218538908648830498636800
Offset: 0

Views

Author

Seiichi Manyama, Sep 24 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\2, (n+1)^(k-1)*binomial(n-k-1, n-2*k)/k!);

Formula

E.g.f.: (1/x) * Series_Reversion( x*exp(-x^2 / (1 - x)) ).
a(n) = n! * Sum_{k=0..floor(n/2)} (n+1)^(k-1) * binomial(n-k-1,n-2*k)/k!.
a(n) ~ s^2 * (2-r*s) * n^(n-1) / (sqrt(2 - 2*r*s + 4*r^2*s^2 - 4*r^3*s^3 + r^4*s^4) * r^(n-1) * exp(n)), where r = exp(1 - sqrt(7/3) * cos(arctan(3^(-3/2))/3) + sqrt(7) * sin(arctan(3^(-3/2))/3)) * ((1 + sqrt(7) * cos(arctan(3^(3/2))/3) - sqrt(21) * sin(arctan(3^(3/2))/3))/3) = 0.311460490854501594554904428274272083649... and s = exp(-1 + sqrt(7/3) * cos(arctan(3^(-3/2))/3) - sqrt(7) * sin(arctan(3^(-3/2))/3)) = 1.428887069084244135127491236860585605773... - Vaclav Kotesovec, Sep 24 2024

A376495 E.g.f. satisfies A(x) = exp(x^3 * A(x)^3 / (1 - x)).

Original entry on oeis.org

1, 0, 0, 6, 24, 120, 3240, 40320, 463680, 11491200, 248572800, 4869849600, 135896745600, 4017466252800, 113150157120000, 3765622699238400, 137549036072448000, 5019223860338688000, 199794776937044889600, 8636618647667288678400
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-3*x^3/(1-x))/3)))
    
  • PARI
    a(n) = n!*sum(k=0, n\3, (3*k+1)^(k-1)*binomial(n-2*k-1, n-3*k)/k!);

Formula

E.g.f.: exp( -LambertW(-3*x^3 / (1-x))/3 ).
a(n) = n! * Sum_{k=0..floor(n/3)} (3*k+1)^(k-1) * binomial(n-2*k-1,n-3*k)/k!.

A376563 E.g.f. satisfies A(x) = exp( x*A(x) / (1 - x^3*A(x)^3) ).

Original entry on oeis.org

1, 1, 3, 16, 149, 2016, 34447, 697264, 16349769, 438688000, 13302715931, 450127632384, 16805250091357, 685963808029696, 30389466219654375, 1452343581621354496, 74484586717220845073, 4080558161067766972416, 237830597688699873580339, 14694357436059217272832000
Offset: 0

Views

Author

Seiichi Manyama, Sep 28 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n\3, (n+1)^(n-3*k-1)*binomial(n-2*k-1, k)/(n-3*k)!);

Formula

E.g.f.: (1/x) * Series_Reversion( x*exp(-x / (1 - x^3)) ).
a(n) = n! * Sum_{k=0..floor(n/3)} (n+1)^(n-3*k-1) * binomial(n-2*k-1,k)/(n-3*k)!.
Showing 1-3 of 3 results.