A376478 a(1) = 1, a(2) = 2, and a(n) = 3^(n-2) for n > 2.
1, 2, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961
Offset: 1
References
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B2.
Links
- Eric Weisstein's World of Mathematics, Domination Number.
- Eric Weisstein's World of Mathematics, Sierpinski Gasket Graph.
- Index entries for linear recurrences with constant coefficients, signature (3).
Programs
-
Mathematica
LinearRecurrence[{3},{1,2,3},30]
-
Python
def A376478(n): return n if n<3 else 3**(n-2) # Chai Wah Wu, Nov 13 2024
Formula
a(n) = 3*a(n-1) for n > 3.
G.f.: (1 - x - 3*x^2)/(1 - 3*x).
E.g.f.: (2 + exp(3*x) + 3*x)/3.
Comments