cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376478 a(1) = 1, a(2) = 2, and a(n) = 3^(n-2) for n > 2.

Original entry on oeis.org

1, 2, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961
Offset: 1

Views

Author

Stefano Spezia, Sep 24 2024

Keywords

Comments

Graham's conjecture: also numbers k such sigma(k) - k = floor(k/2). See Guy.
Also the domination number of the n-Sierpinski gasket graph. - Eric W. Weisstein, Mar 10 2025

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B2.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3},{1,2,3},30]
  • Python
    def A376478(n): return n if n<3 else 3**(n-2) # Chai Wah Wu, Nov 13 2024

Formula

a(n) = 3*a(n-1) for n > 3.
G.f.: (1 - x - 3*x^2)/(1 - 3*x).
E.g.f.: (2 + exp(3*x) + 3*x)/3.