cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376490 G.f. satisfies A(x) = 1 / (1 - x^3*A(x)^3 / (1 - x)).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 5, 9, 13, 39, 87, 157, 389, 923, 1899, 4426, 10582, 23414, 54022, 128643, 295735, 686881, 1631513, 3825456, 8974024, 21330400, 50550032, 119644037, 285176865, 680215735, 1621245503, 3878312658, 9293056066, 22267588692, 53463982624
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • Maple
    A376490 := proc(n)
        add(binomial(4*k,k)*binomial(n-2*k-1,n-3*k)/(3*k+1),k=0..floor(n/3)) ;
    end proc:
    seq(A376490(n),n=0..70) ; # R. J. Mathar, Sep 26 2024
  • PARI
    a(n) = sum(k=0, n\3, binomial(4*k, k)*binomial(n-2*k-1, n-3*k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(4*k,k) * binomial(n-2*k-1,n-3*k) / (3*k+1).
D-finite with recurrence 243*n*(n-1)*(n+1)*a(n) -81*n*(n-1)*(16*n-29)*a(n-1) +27*(106*n-285)*(n-1)*(n-2)*a(n-2) +9*(-628*n^3+4365*n^2-10585*n+8778)*a(n-3) +3*(4057*n^3-33849*n^2+94446*n-89368)*a(n-4) +2*(-8954*n^3+98325*n^2-354169*n+419010)*a(n-5) +12*(1225*n^3-17314*n^2+80552*n-123168)*a(n-6) -384*(2*n-13)*(8*n^2-88*n+239)*a(n-7) +256*(2*n-15)*(n-7)*(2*n-13)*a(n-8)=0. - R. J. Mathar, Sep 26 2024