cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A346503 G.f. A(x) satisfies A(x) = 1 + x^3 * A(x)^2 / (1 - x).

Original entry on oeis.org

1, 0, 0, 1, 1, 1, 3, 5, 7, 14, 26, 43, 79, 148, 264, 483, 903, 1664, 3080, 5771, 10795, 20209, 38059, 71799, 135569, 256762, 487310, 925981, 1762841, 3361897, 6419595, 12275301, 23505143, 45061424, 86485016, 166176499, 319630115, 615387675, 1185940209, 2287527119, 4416083429
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; A[] = 0; Do[A[x] = 1 + x^3 A[x]^2/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = a[n - 1] + Sum[a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 40}]

Formula

a(0) = 1, a(1) = a(2) = 0; a(n) = a(n-1) + Sum_{k=0..n-3} a(k) * a(n-k-3).
a(n) ~ 2^(n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 30 2021
From Seiichi Manyama, Sep 26 2024: (Start)
G.f.: 2/(1 + sqrt(1 - 4*x^3/(1 - x))).
a(n) = Sum_{k=0..floor(n/3)} binomial(2*k,k) * binomial(n-2*k-1,n-3*k) / (k+1). (End)

A376489 G.f. satisfies A(x) = 1 / (1 - x^2*A(x)^2 / (1 - x)).

Original entry on oeis.org

1, 0, 1, 1, 4, 7, 22, 49, 143, 359, 1025, 2742, 7812, 21666, 62044, 175927, 507484, 1460297, 4243802, 12340559, 36108354, 105839241, 311551092, 919000678, 2719362502, 8063263402, 23967845874, 71379427920, 213010634136, 636757780808, 1906765570820
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • Maple
    A376489 := proc(n)
        add(binomial(3*k,k)*binomial(n-k-1,n-2*k)/(2*k+1),k=0..floor(n/2)) ;
    end proc:
    seq(A376489(n),n=0..70) ; # R. J. Mathar, Sep 26 2024
  • PARI
    a(n) = sum(k=0, n\2, binomial(3*k, k)*binomial(n-k-1, n-2*k)/(2*k+1));

Formula

a(n) = Sum_{k=0..floor(n/2)} binomial(3*k,k) * binomial(n-k-1,n-2*k) / (2*k+1).
D-finite with recurrence 8*n*(n+1)*a(n) -28*n*(n-1)*a(n-1) +2*(-9*n^2-n+14)*a(n-2) +(115*n^2-463*n+426)*a(n-3) +4*(-26*n^2+168*n-265)*a(n-4) +3*(3*n-13)*(3*n-14)*a(n-5)=0. - R. J. Mathar, Sep 26 2024

A376491 G.f. satisfies A(x) = 1 / (1 - x^4*A(x)^4 / (1 - x)).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 6, 11, 16, 21, 61, 136, 246, 391, 856, 1926, 3886, 7021, 14146, 30606, 64276, 125561, 251147, 527752, 1115877, 2273557, 4611992, 9583058, 20198698, 41982193, 86481758, 179676908, 377608039, 791559669, 1649078139, 3441054929
Offset: 0

Views

Author

Seiichi Manyama, Sep 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(5*k, k)*binomial(n-3*k-1, n-4*k)/(4*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(5*k,k) * binomial(n-3*k-1,n-4*k) / (4*k+1).
Showing 1-3 of 3 results.