A376501 Primes that contain at least two different even digits where any permutation of the even digits leaving the odd digits fixed produces a prime. See comments for the treatment of 0.
241, 281, 283, 401, 421, 461, 463, 467, 601, 607, 641, 643, 647, 683, 809, 821, 823, 863, 1021, 1049, 1061, 1069, 1201, 1249, 1283, 1409, 1429, 1487, 1601, 1609, 1823, 1847, 2011, 2027, 2039, 2161, 2207, 2347, 2389, 2411, 2417, 2441, 2459, 2473, 2503, 2543, 2617, 2657, 2671, 2677, 2699, 2707
Offset: 1
Examples
2027, 2207 are primes and 227 is prime with a leading 0 generated by permuting even digits in either 2027 or 2207. Hence 2027 and 2207 are in the sequence but 227 is not due to the leading 0. 6067, 6607 are primes but 667 generated by permuting even digits in either 6067 or 6607 is not prime, hence by name, neither number is in the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) local L,oddi,eveni,xodd,i; if not isprime(n) then return false fi; L:= convert(n,base,10); oddi,eveni:= selectremove(t -> L[t]::odd,[$1..nops(L)]); if nops(convert(L[eveni],set))<2 then return false fi; xodd:= add(10^(i-1)*L[i],i=oddi); andmap(t -> isprime(xodd+add(10^(eveni[i]-1)*L[t[i]],i=1..nops(eveni))), combinat:-permute(eveni)) end proc: select(filter, [seq(i,i=3..10000,2)]); # Robert Israel, Oct 23 2024
Comments