cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A376506 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 1.

Original entry on oeis.org

1, 7, 43, 49, 51, 57, 93, 99, 101, 107, 143, 149, 151, 157, 193, 199, 201, 207, 243, 249, 251, 257, 293, 299, 301, 307, 343, 349, 351, 357, 393, 399, 401, 407, 443, 449, 451, 457, 493, 499, 501, 507, 543, 549, 551, 557, 593, 599, 601, 607, 643, 649, 651, 657
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (this sequence), 25 (cf. A017329), or 76 (cf. A376507), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 36, 6, 2, ...

Examples

			7^2 = 49 -> 49^2 = 1 -> 1^2 = 1 -> ... (mod 100).
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

Formula

G.f.: x*(1 + 6*x + 36*x^2 + 6*x^3 + x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - Stefano Spezia, Sep 26 2024

A376507 Natural numbers whose iterated squaring modulo 100 eventually settles at the attractor 76.

Original entry on oeis.org

18, 24, 26, 32, 68, 74, 76, 82, 118, 124, 126, 132, 168, 174, 176, 182, 218, 224, 226, 232, 268, 274, 276, 282, 318, 324, 326, 332, 368, 374, 376, 382, 418, 424, 426, 432, 468, 474, 476, 482, 518, 524, 526, 532, 568, 574, 576, 582, 618, 624, 626, 632, 668, 674
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (this sequence), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 6, 2, 6, 36, ...

Examples

			18^2 = 24 -> 24^2 = 76 -> 76^2 = 76 -> ... (mod 100).
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

Formula

G.f.: 2*x*(9 + 3*x + x^2 + 3*x^3 + 9*x^4)/((1 - x)^2*(1 + x + x^2 + x^3)). - Stefano Spezia, Sep 26 2024

A376509 Natural numbers whose iterated squaring modulo 100 eventually enters the 4-cycle 21, 41, 81, 61.

Original entry on oeis.org

3, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 47, 53, 59, 61, 63, 67, 69, 71, 73, 77, 79, 81, 83, 87, 89, 91, 97, 103, 109, 111, 113, 117, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141, 147, 153, 159, 161, 163, 167, 169, 171, 173, 177, 179, 181
Offset: 1

Views

Author

Martin Renner, Sep 25 2024

Keywords

Comments

The natural numbers decompose into six categories under the operation of repeated squaring modulo 100, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376506), 25 (cf. A017329), or 76 (cf. A376507), and two of which eventually enter one of the 4-cycles 16, 56, 36, 96 (cf. A376508) or 21, 41, 81, 61 (this sequence).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 6, 2, 2, 4, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2, 6, 6, ...

Examples

			3^2 = 9 -> 9^2 = 81 -> 81^2 = 61 -> 61^2 = 21 -> 21^2 = 41 -> 41^2 = 81 -> ... (mod 100)
		

References

  • Alexander K. Dewdney, Computer-Kurzweil. Mit einem Computer-Mikroskop untersuchen wir ein Objekt von faszinierender Struktur in der Ebene der komplexen Zahlen. In: Spektrum der Wissenschaft, Oct 1985, p. 8-14, here p. 11-13 (Iterations on a finite set), 14 (Iteration diagram).

Crossrefs

A376538 Natural numbers whose iterated squaring modulo 1000 eventually settles at the attractor 1.

Original entry on oeis.org

1, 57, 193, 249, 251, 307, 443, 499, 501, 557, 693, 749, 751, 807, 943, 999, 1001, 1057, 1193, 1249, 1251, 1307, 1443, 1499, 1501, 1557, 1693, 1749, 1751, 1807, 1943, 1999, 2001, 2057, 2193, 2249, 2251, 2307, 2443, 2499, 2501, 2557, 2693, 2749, 2751, 2807
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (this sequence), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 56, 136, 56, 2, ...

Examples

			57^2 = 249 -> 249^2 = 1 -> 1^2 = 1 -> ... (mod 1000).
		

Crossrefs

A376539 Natural numbers whose iterated squaring modulo 1000 eventually settles at the attractor 376.

Original entry on oeis.org

68, 124, 126, 182, 318, 374, 376, 432, 568, 624, 626, 682, 818, 874, 876, 932, 1068, 1124, 1126, 1182, 1318, 1374, 1376, 1432, 1568, 1624, 1626, 1682, 1818, 1874, 1876, 1932, 2068, 2124, 2126, 2182, 2318, 2374, 2376, 2432, 2568, 2624, 2626, 2682, 2818, 2874
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (this sequence), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length four: 56, 2, 56, 136, ...

Examples

			68^2 = 624 -> 624^2 = 376 -> 376^2 = 376 -> ... (mod 1000).
		

Crossrefs

A376540 Natural numbers whose iterated squaring modulo 1000 eventually enters the 4-cycle 176, 976, 576, 776.

Original entry on oeis.org

18, 24, 26, 32, 74, 76, 82, 118, 132, 168, 174, 176, 218, 224, 226, 232, 268, 274, 276, 282, 324, 326, 332, 368, 382, 418, 424, 426, 468, 474, 476, 482, 518, 524, 526, 532, 574, 576, 582, 618, 632, 668, 674, 676, 718, 724, 726, 732, 768, 774, 776, 782, 824
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (this sequence) or 201, 401, 801, 601 (cf. A376541), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 6, 2, 6, 42, 2, 6, 36, 14, 36, 6, 2, 42, 6, 2, 6, 36, ...

Examples

			18^2 = 324 -> 324^2 = 976 -> 976^2 = 576 -> 576^2 = 776 -> 776^2 = 176 -> 176^2 = 976 -> ... (mod 1000).
		

Crossrefs

A376541 Natural numbers whose iterated squaring modulo 1000 eventually enters the 4-cycle 201, 401, 801, 601.

Original entry on oeis.org

7, 43, 49, 51, 93, 99, 101, 107, 143, 149, 151, 157, 199, 201, 207, 243, 257, 293, 299, 301, 343, 349, 351, 357, 393, 399, 401, 407, 449, 451, 457, 493, 507, 543, 549, 551, 593, 599, 601, 607, 643, 649, 651, 657, 699, 701, 707, 743, 757, 793, 799, 801, 843
Offset: 1

Views

Author

Martin Renner, Sep 26 2024

Keywords

Comments

The natural numbers decompose into eight categories under the operation of repeated squaring modulo 1000, four of which consist of numbers that eventually settle at the attractors 0 (cf. A008592), 1 (cf. A376538), 376 (cf. A376539), or 625 (cf. A017329), two of which eventually enter one of the 4-cycles 176, 976, 576, 776 (cf. A376540) or 201, 401, 801, 601 (this sequence), and two of which eventually enter one of the 20-cycles 16, 256, 536, 296, 616, 456, 936, 96, 216, 656, 336, 896, 816, 856, 736, 696, 416, 56, 136, 496 (cf. A376508) or 41, 681, 761, 121, 641, 881, 161, 921, 241, 81, 561, 721, 841, 281, 961, 521, 441, 481, 361, 321 (cf. A376509).
The first-order differences of the numbers in this sequence repeat with a fixed period of length sixteen: 36, 6, 2, 42, 6, 2, 6, 36, 6, 2, 6, 42, 2, 6, 36, 14, ...

Examples

			7^2 = 49 -> 49^2 = 401 -> 401^2 = 801 -> 801^2 = 601 -> 601^2 = 201 -> 201^2 = 401 -> ... (mod 1000).
		

Crossrefs

Showing 1-7 of 7 results.