cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A037201 Differences between consecutive primes (A001223) but with repeats omitted.

Original entry on oeis.org

1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 4, 6, 2, 10, 2, 4, 2, 12, 4, 2, 4, 6, 2, 10, 6, 2, 6, 4, 2, 10, 14, 4, 2, 4, 14, 6, 10, 2, 4, 6, 8, 6, 4, 6, 8, 4, 8, 10, 2, 10, 2, 6, 4, 6, 8, 4
Offset: 1

Views

Author

Keywords

Comments

Also the run-compression of the sequence of first differences of prime numbers, where we define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1). - Gus Wiseman, Sep 16 2024

Crossrefs

This is the run-compression of A001223 = first differences of A000040.
The repeats were at positions A064113 before being omitted.
Adding up runs instead of compressing them gives A373822.
The even terms halved are A373947.
For prime-powers instead of prime numbers we have A376308.
Positions of first appearances are A376520, sorted A376521.
A003242 counts compressed compositions.
A333254 lists run-lengths of differences between consecutive primes.
A373948 encodes compression using compositions in standard order.

Programs

  • Haskell
    a037201 n = a037201_list !! (n-1)
    a037201_list = f a001223_list where
       f (x:xs@(x':_)) | x == x'   = f xs
                       | otherwise = x : f xs
    -- Reinhard Zumkeller, Feb 27 2012
    
  • Mathematica
    Flatten[Split[Differences[Prime[Range[150]]]]/.{(k_)..}:>k] (* based on a program by Harvey P. Dale, Jun 21 2012 *)
  • PARI
    t=0;p=2;forprime(q=3,1e3,if(q-p!=t,print1(q-p", "));t=q-p;p=q) \\ Charles R Greathouse IV, Feb 27 2012

Formula

a(n>1) = 2*A373947(n-1). - Gus Wiseman, Sep 16 2024

Extensions

Offset corrected by Reinhard Zumkeller, Feb 27 2012

A376266 Sorted positions of first appearances in A376264 (run-sums of first differences of nonsquarefree numbers).

Original entry on oeis.org

1, 2, 3, 8, 10, 14, 18, 53, 1437, 6222, 40874
Offset: 1

Views

Author

Gus Wiseman, Sep 27 2024

Keywords

Examples

			The sequence of nonsquarefree numbers (A013929) is:
  4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 50, ...
with first differences (A078147):
  4, 1, 3, 4, 2, 2, 4, 1, 2, 1, 4, 4, 4, 4, 1, 3, 1, 1, 2, 2, 2, 4, 3, 1, ...
with runs:
  (4),(1),(3),(4),(2,2),(4),(1),(2),(1),(4,4,4,4),(1),(3),(1,1),(2,2,2), ...
with sums (A376264):
  4, 1, 3, 4, 4, 4, 1, 2, 1, 16, 1, 3, 2, 6, 4, 3, 1, 8, 3, 1, 4, 1, 3, 4, 4, ...
with first appearances at (A376266):
  1, 2, 3, 8, 10, 14, 18, 53, 1437, 6222, 40874, ...
		

Crossrefs

These are the positions of first appearances in A376264.
The unsorted version is A376265.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A333254 lists run-lengths of differences between consecutive primes.
A376267 gives run-lengths of first differences of nonsquarefree numbers.
A376312 gives run-compression of first differences of nonsquarefree numbers.
A376305 gives run-compression of differences of squarefree numbers, ones A376342.

Programs

  • Mathematica
    q=Total/@Split[Differences[Select[Range[10000], !SquareFreeQ[#]&]]]//Most;
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A376520 Position of first appearance of 2n in the run-compression (A037201) of the first differences (A001223) of the prime numbers (A000040).

Original entry on oeis.org

2, 3, 8, 22, 32, 42, 28, 259, 91, 141, 172, 242, 341, 400, 556, 692, 198, 1119, 3126, 2072, 1779, 1737, 7596, 2913, 3246, 2101, 3598, 7651, 4383, 4294, 3457, 8284, 14220, 11986, 15101, 3204, 32808, 18217, 16273, 42990, 22303, 37037, 13729, 43117, 32820, 70501
Offset: 1

Views

Author

Gus Wiseman, Sep 26 2024

Keywords

Comments

We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, we can remove all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The sequence of prime numbers (A000040) is:
  2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, ...
with first differences (A001223):
  1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, ...
with run-compression (A037201):
  1, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, ...
with first appearance of 2n at (A376520):
  2, 3, 8, 22, 32, 42, 28, 259, 91, 141, 172, 242, 341, 400, 556, 692, 198, 1119, ...
		

Crossrefs

This is the position of first appearance of 2n in A037201.
For positions of twos instead of first appearances we have A376343.
The sorted version is A376521.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259 (ones A375927).
A013929 lists nonsquarefree numbers, differences A078147.
A116861 counts partitions by compressed sum, compositions A373949.
A116608 counts partitions by compressed length, compositions A333755.
A274174 counts contiguous compositions, ranks A374249.
A333254 lists run-lengths of differences between consecutive primes.
A373948 encodes compression using compositions in standard order.

Programs

  • Mathematica
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    q=First/@Split[Differences[Select[Range[10000],PrimeQ]]];
    Table[Position[q,2k][[1,1]],{k,mnrm[Rest[q]/2]}]
Showing 1-3 of 3 results.