A376550 Smallest primes that generate a record number of deranged primes (see Comments).
2, 13, 197, 1097, 10259, 10273, 10369, 10723, 10739, 10937, 13729, 31729, 38791, 101267, 101273, 102139, 102359, 102367, 102397, 105379, 107839, 108793, 109387, 109537, 109873, 130579, 150379, 709831, 1002739, 1002973, 1003879, 1005937, 1008379, 1012369, 1012379
Offset: 1
Examples
The smallest prime generating one deranged prime is 13, where the deranged prime is 31. The smallest prime generating two deranged primes is 197, where the deranged primes are 719 and 971. So, 13 and 197 are terms. Although 10753 is the smallest prime that generates 7 deranged primes it is not a term, since the smaller prime 10273 generates a record of 8 deranged primes.
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..138
- David A. Corneth, PARI program
- Wikipedia, Derangement
Programs
-
Mathematica
(* How to find a(4) among the 4-digit candidates, where z=9 is the number of derangements of a 4-element set *) Derangements[list_]:=Module[{n=Length[list],perms,isDerangement}, perms=Permutations[list];isDerangement[perm_]:=And@@Table[perm[[i]]!=list[[i]],{i,n}]; Select[perms,isDerangement]]; numberOfPrimeDerangements[n_]:=Length[Select[FromDigits/@Derangements[IntegerDigits[n]],PrimeQ]]; listOf4digitCandidates=Table[{z,Select[Prime/@Range[169,1229],numberOfPrimeDerangements[#]==z&,1]},{z,3,9}]
-
PARI
\\ See Corneth link
-
Python
from itertools import islice from sympy import isprime, nextprime from sympy.utilities.iterables import multiset_derangements as md def f(n): return len(set(tuple(d) for d in md(list(str(n))) if isprime(int("".join(d))))) def agen(): # generator of terms record, p = -1, 2 while True: v = f(p) if v > record: yield p record = v p = nextprime(p) print(list(islice(agen(), 26))) # Michael S. Branicky, Nov 27 2024
Extensions
a(14) and beyond from Michael S. Branicky, Nov 27 2024
2 prepended by David A. Corneth, Nov 27 2024
Comments