cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376551 This sequence satisfies: n = Sum_{k=0..n} ((-n)^(n - k)*binomial(n, k)*a(k)).

Original entry on oeis.org

0, 1, 6, 30, 164, 980, 6342, 44254, 331144, 2642472, 22379210, 200311034, 1887949164, 18676191196, 193352093326, 2089583250990, 23519349939728, 275137968890576, 3339075981451410, 41967997127203042, 545452423113576820, 7320310586184404676, 101314914535943061206, 1444341387745444125590, 21185535150823665972120, 319401932972290702809400
Offset: 0

Views

Author

Thomas Scheuerle, Nov 27 2024

Keywords

Crossrefs

Programs

  • PARI
    a(max_n) = {my(x='x+O('x^(max_n+1))); concat([0], Vec(serlaplace(x*exp(x)*exp(x*exp(x))*(1+x))))}
    
  • PARI
    a(n) = n*sum(k=0, n, binomial(n, k)*(n-k)^k)

Formula

E.g.f.: x*exp(x)*exp(x*exp(x))*(x+1).
a(n) = A000248(n)*n.
a(n) = n*Sum_{k=0..n} (binomial(n, k)*(n - k)^k).