A376573 Numbers that are not squares of triangular numbers. Complement of A000537.
2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11011
- Eric Weisstein's World of Mathematics, Triangular Number
Programs
-
Mathematica
A376573[n_] := With[{m = Floor[(4*n)^(1/4)]}, n + m - Boole[4*n <= m*(m - 1)*(m*(m + 3) + 4)]]; Array[A376573, 96] (* or *) Complement[Range[Last[#]], #] & [Accumulate[Range[4]^3]] (* Paolo Xausa, Oct 04 2024 *)
-
PARI
isok(k) = !issquare(k) || (issquare(k) && !ispolygonal(sqrtint(k), 3)); \\ Michel Marcus, Oct 02 2024
-
Python
from sympy import integer_nthroot def A376573(n): return n+(m:=integer_nthroot(k:=n<<2,4)[0])-(k<=m*(m-1)*(m**2+3*m+4))
Formula
a(n) = n+m if 4n>m*(m-1)*(m^2+3*m+4) and a(n) = n+m-1 otherwise where m = floor((4n)^(1/4)).
Comments