A376580 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^(2*j-1))^2.
1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 3, 3, 3, 4, 4, 5, 5, 7, 9, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 18, 17, 19, 24, 23, 25, 27, 28, 31, 32, 33, 37, 40, 42, 44, 47, 52, 54, 59, 62, 67, 75, 75, 80, 87, 90, 95, 102, 109, 114, 119, 127, 134, 142, 150, 159, 171, 178, 187, 199, 211
Offset: 0
Keywords
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
nmax=100; CoefficientList[Series[Sum[x^(k^2)*Product[1+x^(2*j-1), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
Formula
a(n) ~ c * A376621^sqrt(n) / sqrt(n), where c = 1/(2*sqrt(3 - 4*sinh(arcsinh(3^(3/2)/2) / 3) / sqrt(3))) = 0.390989767113799449629...
a(n) ~ c * A376542(n), where c = (108 + 12*sqrt(93))^(1/3)/3 - 4/(108 + 12*sqrt(93))^(1/3) = 1.364655607... is the real root of the equation c*(4 + c^2) = 8.