A376606 a(n) is the numerator of the expected number of moves to reach a position outside an nXn chessboard, starting in one of the corners, when performing a random walk with unit steps on the square lattice.
1, 2, 11, 10, 99, 122, 619, 4374, 187389, 482698, 11031203, 33386106, 32723853563, 139832066, 150236161755, 633573154269934, 5755694771977, 189378719187729770, 509943025510535499, 6031948951257694364778, 1044408374351599765540157091, 27891966006517951087819226666
Offset: 1
Examples
1, 2, 11/4, 10/3, 99/26, 122/29, 619/136, 4374/901, 187389/36562, 482698/89893, ... Approximately 1, 2, 2.75, 3.333, 3.808, 4.207, 4.551, 4.855, 5.125, 5.370, 5.593, ...
Links
- Hugo Pfoertner, Table of n, a(n) for n = 1..45
- Hugo Pfoertner, Plot of A376606(n)/A376607(n) vs n, using Plot 2.
Crossrefs
Programs
-
PARI
droprob(n,moves=[[1,0],[0,1],[0,-1],[-1,0]], nmoves=4) = {my(np=n^2+1, M=matrix(np), P=1/nmoves); for(t=1, nmoves, for( i=1, n, my(ti=i+moves[t][1]); for(j=1,n,my(tj=j+moves[t][2]); my(m=(i-1)*n+j); if(ti<1 || ti>n || tj<1 || tj>n, M[m,np]+=P, my(mt=(ti-1)*n+tj); M[m,mt]+=P)))); vecsum((1/(matid(np)-M))[,1])}; a376606(n) = numerator(droprob(n))
Comments