cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A376607 a(n) is the denominator corresponding to A376606(n).

Original entry on oeis.org

1, 1, 4, 3, 26, 29, 136, 901, 36562, 89893, 1972460, 5758715, 5465775058, 22687425, 23740281872, 97725875584681, 868245469442, 27985118605791989, 73925970047640596, 858944872773025112243, 146251429177204071216521962, 3844747107219467355553841461, 4817425173757369027231100024
Offset: 1

Views

Author

Ruediger Jehn and Hugo Pfoertner, Oct 03 2024

Keywords

Examples

			1/1, 2/1, 11/4, 10/3, 99/26, 122/29, 619/136, 4374/901, 187389/36562, 482698/89893, ...
		

Crossrefs

A376606 are the corresponding numerators.

Programs

  • PARI
    \\ Uses function droprob from A376606
    a376607(n) = denominator(droprob(n))

A376609 a(n) is the numerator of the expected number of random moves of a chess king to reach a position outside an nXn chessboard, starting in one of the corners.

Original entry on oeis.org

1, 8, 72, 46, 23747, 94968, 12161644, 158536576, 165181795263, 1779861954248, 60921563004721184, 136512657826472304, 38548316743830620183051, 581371653539561314, 2630585854108441990301102856, 120104329127347395409698056, 5092493809189909792181005355935991197, 6666722670813237580783418910187983288
Offset: 1

Views

Author

Hugo Pfoertner, Oct 03 2024

Keywords

Comments

The king visits the Moore neighborhood (see A272763). The piece does not pay attention to its position and will fall off the board if it makes a move beyond the edge of the board.

Examples

			1, 8/5, 72/35, 46/19, 23747/8723, 94968/31879, 12161644/3797647, 158536576/46627015, 165181795263/46174521031, ...
Approximately 1, 1.6, 2.057, 2.421, 2.722, 2.979, 3.202, 3.400, 3.577, 3.738, ...
		

Crossrefs

A376610 are the corresponding denominators.
A376606 and A376607 are similar for a rook walk with unit steps.
A376736 and A376737 are similar for a chess knight.

Programs

  • PARI
    \\ Uses function droprob from A376606
    kingmoves = [[1, 0], [0, 1], [0, -1], [-1, 0], [-1, -1], [-1, 1], [1, -1], [1, 1]];
    a376609(n) = numerator(droprob(n,kingmoves,8))

A376610 a(n) is the denominator corresponding to A376609(n).

Original entry on oeis.org

1, 5, 35, 19, 8723, 31879, 3797647, 46627015, 46174521031, 476162538587, 15682351095751655, 33959335630630535, 9299679062615813936051, 136414995946010125, 601830836638387694170497793, 26847490207486334339335997, 1114246119072163102989483761615244013, 1430040019838636422092747945537920663
Offset: 1

Views

Author

Hugo Pfoertner, Oct 03 2024

Keywords

Examples

			1, 8/5, 72/35, 46/19, 23747/8723, 94968/31879, 12161644/3797647, 158536576/46627015, 165181795263/46174521031, ...
		

Crossrefs

A376609 are the corresponding numerators.

Programs

  • PARI
    \\ Uses function droprob from A376606 and definition of kingmoves from A376609
    a376610(n) = denominator(droprob(n, kingmoves, 8))

A376736 a(n) is the numerator of the expected number of random moves of a chess knight to reach a position outside an nXn chessboard, starting in one of the corners.

Original entry on oeis.org

1, 1, 4, 62, 269, 1766, 395497, 101338, 44125237, 227721959, 3361699348115, 483866477194862, 277887411827604127, 790848403160840410, 2785714552717079970073201, 89715505143567836216964174, 2034961072108249587083318018747, 457177774768288408431166142758841, 1085703228381446052419019696184520372520
Offset: 1

Views

Author

Hugo Pfoertner, Oct 03 2024

Keywords

Comments

The piece does not pay attention to its position and will fall off the board if it makes a move beyond the edge of the board.

Examples

			1, 1, 4/3, 62/43, 269/167, 1766/1017, 395497/213488, 101338/51901, 44125237/21578387, 227721959/106983448, ...
Approximately 1, 1, 1.333, 1.442, 1.611, 1.736, 1.853, 1.953, 2.045, 2.129, 2.206, ...
		

Crossrefs

A376737 are the corresponding denominators.
A376606 and A376607 are similar for a rook walk with unit steps.
A376609 and A376610 are similar for a chess king.

Programs

  • PARI
    \\ Uses function droprob from A376606
    knightmoves = [[2, 1], [1, 2], [-1, 2], [-2, 1], [-2, -1], [-1, -2], [1, -2], [2, -1]];
    a376736(n) = numerator(droprob(n, knightmoves, 8))

A376737 a(n) is the denominator corresponding to A376736(n).

Original entry on oeis.org

1, 1, 3, 43, 167, 1017, 213488, 51901, 21578387, 106983448, 1524134453409, 212520825762723, 118603854051948819, 328857354494351169, 1131079058617495914656969, 35636007162246675331778279, 792054341291879335697891524219, 174615658931159537184638645409827, 407432375846003705593053861468274012573
Offset: 1

Views

Author

Hugo Pfoertner, Oct 03 2024

Keywords

Examples

			1/1, 1/1, 4/3, 62/43, 269/167, 1766/1017, 395497/213488, 101338/51901, ...
		

Crossrefs

A376736 are the corresponding numerators.

Programs

  • PARI
    \\ Uses function droprob from A376606 and definition of knightmoves from A376736
    a376737(n) = denominator(droprob(n, knightmoves, 8))

A376837 a(n) is the number of paths to reach a position outside an 8 X 8 chessboard after n steps, starting in one of the corners, when performing a walk with unit steps on the square lattice.

Original entry on oeis.org

2, 2, 6, 12, 40, 100, 350, 982, 3542, 10738, 39556, 127272, 475332, 1602458, 6030830, 21056830, 79514918, 284645860, 1075801928, 3917238476, 14799350958, 54498514998, 205721183302, 763140403282, 2878050335900, 10726898070952, 40421307665420, 151112554663930, 569043610134622, 2131459901180670
Offset: 1

Views

Author

Ruediger Jehn, Oct 06 2024

Keywords

Comments

a(n)/4^n is the probability that the 1-step rook falls off the chess board at step n. The average number of steps it takes this piece to fall off the board is Sum_{n>0} n*a(n)/4^n = A376606(8)/A376607(8) = 4374/901 or approximately 4.855 steps.
Because of the mirror symmetry of the problem to the board diagonal, all terms are even.

Examples

			a(3) = 6. Starting on square a1 there are 6 paths to leave the chess board: up-up-left, up-down-left, up-down-down, right-right-down, right-left-down and right-left-left.
		

Crossrefs

Cf. A376606, A376607, {A052899}+1 is the analog for the 4X4 chessboard.

Programs

  • Mathematica
    LinearRecurrence[{5, 9, -69, 21, 225, -171, -162, 108, 32, -16}, {2, 2, 6, 12, 40, 100, 350, 982, 3542, 10738}, 30] (* Hugo Pfoertner, Oct 16 2024 *)
  • PARI
    Vec(2*(1 - 4*x - 11*x^2 + 51*x^3 + 11*x^4 - 143*x^5 + 42*x^6 + 78*x^7 - 12*x^8 - 8*x^9)/((1 - 2*x)*(1 - 3*x^2 + x^3)*(1 - 3*x + x^3)*(1 - 12*x^2 - 8*x^3)) + O(x^30)) \\ Andrew Howroyd, Oct 16 2024

Formula

a(n) == 0 (mod 2).
G.f.: 2*x*(1 - 4*x - 11*x^2 + 51*x^3 + 11*x^4 - 143*x^5 + 42*x^6 + 78*x^7 - 12*x^8 - 8*x^9)/((1 - 2*x)*(1 - 3*x^2 + x^3)*(1 - 3*x + x^3)*(1 - 12*x^2 - 8*x^3)). - Andrew Howroyd, Oct 16 2024
Showing 1-6 of 6 results.