A376607
a(n) is the denominator corresponding to A376606(n).
Original entry on oeis.org
1, 1, 4, 3, 26, 29, 136, 901, 36562, 89893, 1972460, 5758715, 5465775058, 22687425, 23740281872, 97725875584681, 868245469442, 27985118605791989, 73925970047640596, 858944872773025112243, 146251429177204071216521962, 3844747107219467355553841461, 4817425173757369027231100024
Offset: 1
1/1, 2/1, 11/4, 10/3, 99/26, 122/29, 619/136, 4374/901, 187389/36562, 482698/89893, ...
A376606 are the corresponding numerators.
A376609
a(n) is the numerator of the expected number of random moves of a chess king to reach a position outside an nXn chessboard, starting in one of the corners.
Original entry on oeis.org
1, 8, 72, 46, 23747, 94968, 12161644, 158536576, 165181795263, 1779861954248, 60921563004721184, 136512657826472304, 38548316743830620183051, 581371653539561314, 2630585854108441990301102856, 120104329127347395409698056, 5092493809189909792181005355935991197, 6666722670813237580783418910187983288
Offset: 1
1, 8/5, 72/35, 46/19, 23747/8723, 94968/31879, 12161644/3797647, 158536576/46627015, 165181795263/46174521031, ...
Approximately 1, 1.6, 2.057, 2.421, 2.722, 2.979, 3.202, 3.400, 3.577, 3.738, ...
A376610 are the corresponding denominators.
-
\\ Uses function droprob from A376606
kingmoves = [[1, 0], [0, 1], [0, -1], [-1, 0], [-1, -1], [-1, 1], [1, -1], [1, 1]];
a376609(n) = numerator(droprob(n,kingmoves,8))
A376610
a(n) is the denominator corresponding to A376609(n).
Original entry on oeis.org
1, 5, 35, 19, 8723, 31879, 3797647, 46627015, 46174521031, 476162538587, 15682351095751655, 33959335630630535, 9299679062615813936051, 136414995946010125, 601830836638387694170497793, 26847490207486334339335997, 1114246119072163102989483761615244013, 1430040019838636422092747945537920663
Offset: 1
1, 8/5, 72/35, 46/19, 23747/8723, 94968/31879, 12161644/3797647, 158536576/46627015, 165181795263/46174521031, ...
A376609 are the corresponding numerators.
A376736
a(n) is the numerator of the expected number of random moves of a chess knight to reach a position outside an nXn chessboard, starting in one of the corners.
Original entry on oeis.org
1, 1, 4, 62, 269, 1766, 395497, 101338, 44125237, 227721959, 3361699348115, 483866477194862, 277887411827604127, 790848403160840410, 2785714552717079970073201, 89715505143567836216964174, 2034961072108249587083318018747, 457177774768288408431166142758841, 1085703228381446052419019696184520372520
Offset: 1
1, 1, 4/3, 62/43, 269/167, 1766/1017, 395497/213488, 101338/51901, 44125237/21578387, 227721959/106983448, ...
Approximately 1, 1, 1.333, 1.442, 1.611, 1.736, 1.853, 1.953, 2.045, 2.129, 2.206, ...
A376737 are the corresponding denominators.
-
\\ Uses function droprob from A376606
knightmoves = [[2, 1], [1, 2], [-1, 2], [-2, 1], [-2, -1], [-1, -2], [1, -2], [2, -1]];
a376736(n) = numerator(droprob(n, knightmoves, 8))
A376737
a(n) is the denominator corresponding to A376736(n).
Original entry on oeis.org
1, 1, 3, 43, 167, 1017, 213488, 51901, 21578387, 106983448, 1524134453409, 212520825762723, 118603854051948819, 328857354494351169, 1131079058617495914656969, 35636007162246675331778279, 792054341291879335697891524219, 174615658931159537184638645409827, 407432375846003705593053861468274012573
Offset: 1
1/1, 1/1, 4/3, 62/43, 269/167, 1766/1017, 395497/213488, 101338/51901, ...
A376736 are the corresponding numerators.
A376837
a(n) is the number of paths to reach a position outside an 8 X 8 chessboard after n steps, starting in one of the corners, when performing a walk with unit steps on the square lattice.
Original entry on oeis.org
2, 2, 6, 12, 40, 100, 350, 982, 3542, 10738, 39556, 127272, 475332, 1602458, 6030830, 21056830, 79514918, 284645860, 1075801928, 3917238476, 14799350958, 54498514998, 205721183302, 763140403282, 2878050335900, 10726898070952, 40421307665420, 151112554663930, 569043610134622, 2131459901180670
Offset: 1
a(3) = 6. Starting on square a1 there are 6 paths to leave the chess board: up-up-left, up-down-left, up-down-down, right-right-down, right-left-down and right-left-left.
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,9,-69,21,225,-171,-162,108,32,-16).
-
LinearRecurrence[{5, 9, -69, 21, 225, -171, -162, 108, 32, -16}, {2, 2, 6, 12, 40, 100, 350, 982, 3542, 10738}, 30] (* Hugo Pfoertner, Oct 16 2024 *)
-
Vec(2*(1 - 4*x - 11*x^2 + 51*x^3 + 11*x^4 - 143*x^5 + 42*x^6 + 78*x^7 - 12*x^8 - 8*x^9)/((1 - 2*x)*(1 - 3*x^2 + x^3)*(1 - 3*x + x^3)*(1 - 12*x^2 - 8*x^3)) + O(x^30)) \\ Andrew Howroyd, Oct 16 2024
Showing 1-6 of 6 results.
Comments