A376606
a(n) is the numerator of the expected number of moves to reach a position outside an nXn chessboard, starting in one of the corners, when performing a random walk with unit steps on the square lattice.
Original entry on oeis.org
1, 2, 11, 10, 99, 122, 619, 4374, 187389, 482698, 11031203, 33386106, 32723853563, 139832066, 150236161755, 633573154269934, 5755694771977, 189378719187729770, 509943025510535499, 6031948951257694364778, 1044408374351599765540157091, 27891966006517951087819226666
Offset: 1
1, 2, 11/4, 10/3, 99/26, 122/29, 619/136, 4374/901, 187389/36562, 482698/89893, ...
Approximately 1, 2, 2.75, 3.333, 3.808, 4.207, 4.551, 4.855, 5.125, 5.370, 5.593, ...
A376607 are the corresponding denominators.
A376609 and
A376610 are similar for a chess king visiting the Moore neighborhood.
-
droprob(n,moves=[[1,0],[0,1],[0,-1],[-1,0]], nmoves=4) = {my(np=n^2+1, M=matrix(np), P=1/nmoves); for(t=1, nmoves, for( i=1, n, my(ti=i+moves[t][1]); for(j=1,n,my(tj=j+moves[t][2]); my(m=(i-1)*n+j); if(ti<1 || ti>n || tj<1 || tj>n, M[m,np]+=P, my(mt=(ti-1)*n+tj); M[m,mt]+=P)))); vecsum((1/(matid(np)-M))[,1])};
a376606(n) = numerator(droprob(n))
A376609
a(n) is the numerator of the expected number of random moves of a chess king to reach a position outside an nXn chessboard, starting in one of the corners.
Original entry on oeis.org
1, 8, 72, 46, 23747, 94968, 12161644, 158536576, 165181795263, 1779861954248, 60921563004721184, 136512657826472304, 38548316743830620183051, 581371653539561314, 2630585854108441990301102856, 120104329127347395409698056, 5092493809189909792181005355935991197, 6666722670813237580783418910187983288
Offset: 1
1, 8/5, 72/35, 46/19, 23747/8723, 94968/31879, 12161644/3797647, 158536576/46627015, 165181795263/46174521031, ...
Approximately 1, 1.6, 2.057, 2.421, 2.722, 2.979, 3.202, 3.400, 3.577, 3.738, ...
A376610 are the corresponding denominators.
-
\\ Uses function droprob from A376606
kingmoves = [[1, 0], [0, 1], [0, -1], [-1, 0], [-1, -1], [-1, 1], [1, -1], [1, 1]];
a376609(n) = numerator(droprob(n,kingmoves,8))
A376736
a(n) is the numerator of the expected number of random moves of a chess knight to reach a position outside an nXn chessboard, starting in one of the corners.
Original entry on oeis.org
1, 1, 4, 62, 269, 1766, 395497, 101338, 44125237, 227721959, 3361699348115, 483866477194862, 277887411827604127, 790848403160840410, 2785714552717079970073201, 89715505143567836216964174, 2034961072108249587083318018747, 457177774768288408431166142758841, 1085703228381446052419019696184520372520
Offset: 1
1, 1, 4/3, 62/43, 269/167, 1766/1017, 395497/213488, 101338/51901, 44125237/21578387, 227721959/106983448, ...
Approximately 1, 1, 1.333, 1.442, 1.611, 1.736, 1.853, 1.953, 2.045, 2.129, 2.206, ...
A376737 are the corresponding denominators.
-
\\ Uses function droprob from A376606
knightmoves = [[2, 1], [1, 2], [-1, 2], [-2, 1], [-2, -1], [-1, -2], [1, -2], [2, -1]];
a376736(n) = numerator(droprob(n, knightmoves, 8))
A376837
a(n) is the number of paths to reach a position outside an 8 X 8 chessboard after n steps, starting in one of the corners, when performing a walk with unit steps on the square lattice.
Original entry on oeis.org
2, 2, 6, 12, 40, 100, 350, 982, 3542, 10738, 39556, 127272, 475332, 1602458, 6030830, 21056830, 79514918, 284645860, 1075801928, 3917238476, 14799350958, 54498514998, 205721183302, 763140403282, 2878050335900, 10726898070952, 40421307665420, 151112554663930, 569043610134622, 2131459901180670
Offset: 1
a(3) = 6. Starting on square a1 there are 6 paths to leave the chess board: up-up-left, up-down-left, up-down-down, right-right-down, right-left-down and right-left-left.
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,9,-69,21,225,-171,-162,108,32,-16).
-
LinearRecurrence[{5, 9, -69, 21, 225, -171, -162, 108, 32, -16}, {2, 2, 6, 12, 40, 100, 350, 982, 3542, 10738}, 30] (* Hugo Pfoertner, Oct 16 2024 *)
-
Vec(2*(1 - 4*x - 11*x^2 + 51*x^3 + 11*x^4 - 143*x^5 + 42*x^6 + 78*x^7 - 12*x^8 - 8*x^9)/((1 - 2*x)*(1 - 3*x^2 + x^3)*(1 - 3*x + x^3)*(1 - 12*x^2 - 8*x^3)) + O(x^30)) \\ Andrew Howroyd, Oct 16 2024
Showing 1-4 of 4 results.
Comments