cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A376619 a(n) is the least odd number k such that A376615(k) = n, or -1 if no such number exists.

Original entry on oeis.org

3, 21, 345, 10625, 74375, 860625, 84189105, 1599592995, 23993894925
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2024

Keywords

Comments

Without the restriction to odd numbers the corresponding sequence is 3*2^(n-1) = A007283(n-1).
All the terms above 3 are odd binary Niven numbers (A144302).
a(10) > 10^13, if it exists.

Examples

			  n | The n iterations
  --+------------------------------------------------------
  1 | 3 -> 3/2
  2 | 21 -> 7 -> 7/3
  3 | 345 -> 69 -> 23 -> 23/4
  4 | 10625 -> 2125 -> 425 -> 85 -> 85/4
  5 | 74375 -> 10625 -> 2125 -> 425 -> 85 -> 85/4
  6 | 860625 -> 95625 -> 10625 -> 2125 -> 425 -> 85 -> 85/4
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Module[{bw = DigitCount[n, 2, 1]}, If[bw == 1, 0, If[!Divisible[n, bw], 1, 1 + s[n/bw]]]]; seq[len_] := Module[{v = Table[0, {len}], c = 0, k = 3, i}, While[c < len, i = s[k]; If[v[[i]] == 0, c++; v[[i]] = k]; k += 2]; v]; seq[5]
  • PARI
    s(n) = {my(w = hammingweight(n)); if(w == 1, 0, if(n % w, 1, 1 + s(n/w)));}
    lista(len) = {my(v = vector(len), c = 0, k = 3, i); while(c < len, i = s(k); if(v[i] == 0, c++; v[i] = k); k += 2); v;}

A376616 Binary Niven numbers (A049445) k such that k/wt(k) is also a binary Niven number, where wt(k) = A000120(k) is the binary weight of k.

Original entry on oeis.org

1, 2, 4, 8, 12, 16, 20, 24, 32, 36, 40, 48, 64, 68, 72, 80, 96, 126, 128, 132, 136, 144, 160, 192, 240, 252, 256, 260, 264, 272, 276, 288, 320, 324, 345, 368, 384, 405, 414, 432, 460, 464, 480, 486, 504, 512, 516, 520, 528, 544, 552, 576, 624, 640, 648, 688, 690
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2024

Keywords

Comments

Numbers k such that A376615(k) = 0 or A376615(k) >= 3.
If m is a term then 2^k * m is a term for all k >= 0.

Examples

			12 is a term since 12/wt(12) = 6 is an integer and also 6/wt(6) = 3 is an integer.
		

Crossrefs

Subsequence of A049445.
Subsequences: A000079, A376617, A376618.

Programs

  • Mathematica
    q[k_] := Module[{w = DigitCount[k, 2, 1]}, Divisible[k, w] && Divisible[k/w, DigitCount[k/w, 2, 1]]]; Select[Range[1000], q]
  • PARI
    is(k) = {my(w = hammingweight(k)); !(k % w) && !((k/w) % hammingweight(k/w));}

A376617 Binary Niven numbers (A049445) k such that m = k/wt(k) and m/wt(m) are also binary Niven numbers, where wt(k) = A000120(k) is the binary weight of k.

Original entry on oeis.org

1, 2, 4, 8, 16, 24, 32, 40, 48, 64, 72, 80, 96, 128, 136, 144, 160, 192, 256, 264, 272, 288, 320, 384, 512, 520, 528, 544, 576, 640, 756, 768, 960, 1024, 1032, 1040, 1056, 1088, 1104, 1152, 1280, 1296, 1380, 1472, 1512, 1536, 1620, 1656, 1728, 1840, 1856, 1920, 1944
Offset: 1

Views

Author

Amiram Eldar, Sep 30 2024

Keywords

Comments

Numbers k such that A376615(k) = 0 or A376615(k) >= 4.

Examples

			24 is a term since 24/wt(24) = 12 is an integer, 12/wt(12) = 6 is an integer, and 6/wt(6) = 3 is an integer.
		

Crossrefs

Subsequence of A049445 and A376616.
A000079 is a subsequence.

Programs

  • Mathematica
    q[k_] := Module[{w = DigitCount[k, 2, 1], w2, m, n}, IntegerQ[m = k/w] && Divisible[m, w2 = DigitCount[m, 2, 1]] && Divisible[n = m/w2, DigitCount[n, 2, 1]]]; Select[Range[2000], q]
  • PARI
    s(n) = {my(w = hammingweight(n)); if(w == 1, 0, if(n % w, 1, 1 + s(n/w)));}
    is(k) = {my(sk = s(k)); sk == 0 || sk >= 4;}

A377384 a(n) is the number of iterations that n requires to reach a noninteger or a factorial number under the map x -> x / f(x), where f(k) = A034968(k) is the sum of digits in the factorial-base representation of k; a(n) = 0 if n is a factorial number.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 0, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 27 2024

Keywords

Comments

The factorial numbers are fixed points of the map, since f(k!) = 1 for all k >= 0. Therefore they are arbitrarily assigned the value a(k!) = 0.
Each number n starts a chain of a(n) integers: n, n/f(n), (n/f(n))/f(n/f(n)), ..., of them the first a(n)-1 integers are factorial-base Niven numbers (A118363).

Examples

			a(8) = 2 since 8/f(8) = 4 and 4/f(4) = 2 is a factorial number that is reached after 2 iterations.
a(27) = 3 since 27/f(27) = 9, 9/f(9) = 3 and 3/f(3) = 3/2 is a noninteger that is reached after 3 iterations.
		

Crossrefs

Analogous sequences: A376615 (binary), A377208 (Zeckendorf).

Programs

  • Mathematica
    fdigsum[n_] := Module[{k = n, m = 2, r, s = 0}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, s += r; m++]; s]; a[n_] := a[n] = Module[{s = fdigsum[n]}, If[s == 1, 0, If[!Divisible[n, s], 1, 1 + a[n/s]]]]; Array[a, 100]
  • PARI
    fdigsum(n) = {my(k = n, m = 2, r, s = 0); while([k, r] = divrem(k, m); k != 0 || r != 0, s += r; m++); s;}
    a(n) = {my(f = fdigsum(n)); if(f == 1, 0, if(n % f, 1, 1 + a(n/f)));}
    
  • Python
    def f(n, p=2): return n if n

Formula

a(n) = 0 if and only if n is in A000142 (by definition).
a(n) = 1 if and only if n is in A286607.
a(n) >= 2 if and only if n is in A118363 \ A000142 (i.e., n is a factorial-base Niven number that is not a factorial number).
a(n) >= 3 if and only if n is in A377385 \ A000142.
a(n) >= 4 if and only if n is in A377386 \ A000142.
a(n) < A000005(n).

A377208 a(n) is the number of iterations that n requires to reach a noninteger or a Fibonacci number under the map x -> x / z(x), where z(k) = A007895(k) is the number of terms in the Zeckendorf representation of k; a(n) = 0 if n is a Fibonacci number.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 2, 0, 2, 1, 1, 1, 2, 1, 1, 0, 2, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 1, 0, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 0, 3, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Oct 20 2024

Keywords

Comments

The Fibonacci numbers are the fixed points of the map, since z(Fibonacci(k)) = 1 for all k >= 1. Therefore they are arbitrarily assigned the value a(Fibonacci(k)) = 0.
Each number n starts a chain of a(n) integers: n, n/z(n), (n/z(n))/z(n/z(n)), ..., of them the first a(n)-1 integers are Zeckendorf-Niven numbers (A328208).

Examples

			a(12) = 2 since 12/z(12) = 4 and 4/z(4) = 2 is a Fibonacci number that is reached after 2 iterations.
a(36) = 3 since 36/z(36) = 18, 18/z(18) = 9 and 9/z(9) = 9/2 is a noninteger that is reached after 3 iterations.
		

Crossrefs

Cf. A000005, A000045, A007895, A328208, A376615 (binary analog), A377209, A377210.

Programs

  • Mathematica
    zeck[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; (* Alonso del Arte at A007895 *)
    a[n_] := a[n] = Module[{z = zeck[n]}, If[z == 1, 0, If[!Divisible[n, z], 1, 1 + a[n/z]]]]; Array[a, 100]
  • PARI
    zeck(n) = if(n<4, n>0, my(k=2, s, t); while(fibonacci(k++)<=n, ); while(k && n, t=fibonacci(k); if(t<=n, n-=t; s++); k--); s) \\ Charles R Greathouse IV at A007895
    a(n) = {my(z = zeck(n)); if(z == 1, 0, if(n % z, 1, 1 + a(n/z)));}

Formula

a(n) = 0 if and only if n is in A000045 (by definition).
a(n) >= 2 if and only if n is in A328208 \ A000079 (i.e., n is a Zeckendorf-Niven number that is not a Fibonacci number).
a(n) >= 3 if and only if n is in A377209 \ A000079.
a(n) >= 4 if and only if n is in A377210 \ A000079.
a(n) < A000005(n).
Showing 1-5 of 5 results.