A376793 Numbers k such that k and k+1 are both in A376616.
1, 1424, 2484, 4304, 4655, 6223, 10624, 13824, 20624, 22784, 29448, 33424, 33984, 36944, 41535, 43263, 45184, 45324, 65744, 66199, 68624, 69632, 70784, 74304, 74627, 99584, 103103, 103424, 105720, 114704, 120680, 139904, 147636, 164224, 166144, 192576, 199968
Offset: 1
Examples
1424 is a term since both 1424 and 1425 are in A376616: 1424/A000120(1424) = 356 and 356/A000120(356) = 89 are integers, and 1425/A000120(1425) = 285 and 285/A000120(285) = 57 are integers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
q[k_] := q[k] = Module[{w = DigitCount[k, 2, 1]}, Divisible[k, w] && Divisible[k/w, DigitCount[k/w, 2, 1]]]; Select[Range[20000], q[#] && q[#+1] &]
-
PARI
is1(k) = {my(w = hammingweight(k)); !(k % w) && !((k/w) % hammingweight(k/w));} lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Comments