A376795 Numbers k such that k and k+1 are both in A376617.
1, 10624, 13824, 1114112, 2625664, 4563999, 6554624, 16843904, 17266688, 17368064, 20003840, 27137024, 32375160, 32679360, 42993664, 44643599, 63732096, 69222464, 69424640, 70083584, 80778752, 84783104, 85458944, 90256383, 92478000, 116469899, 118063231, 121900544
Offset: 1
Examples
10624 is a term since both 10624 and 10625 are in A376617: 10624/A000120(10624) = 2656, 2656/A000120(2656) = 664, and 664/A000120(664) = 166 are integers, and 10625/A000120(10625) = 2125, 2125/A000120(2125) = 425, and 425/A000120(425) = 85 are integers.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
q[k_] := q[k] = Module[{w = DigitCount[k, 2, 1], w2, m, n}, IntegerQ[m = k/w] && Divisible[m, w2 = DigitCount[m, 2, 1]] && Divisible[n = m/w2, DigitCount[n, 2, 1]]]; Select[Range[1.2*10^6], q[#] && q[#+1] &]
-
PARI
s(n) = {my(w = hammingweight(n)); if(w == 1, 0, if(n % w, 1, 1 + s(n/w)));} is1(k) = {my(sk = s(k)); sk == 0 || sk >= 4;} lista(kmax) = {my(q1 = is1(1), q2); for(k = 2, kmax, q2 = is1(k); if(q1 && q2, print1(k-1, ", ")); q1 = q2);}
Comments