A376636 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^2)^(1/3).
1, 3, 9, 18, 0, -162, -567, 0, 8019, 31590, 0, -520506, -2160756, 0, 38480265, 164549880, 0, -3072083274, -13390246485, 0, 258054995016, 1139882486490, 0, -22474826957232, -100257845970825, 0, 2011064804461548, 9039247392729582, 0, -183769714890451800
Offset: 0
Keywords
Links
- Paolo Xausa, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
A376636[n_] := 9^n*Binomial[(2*n + 1)/3, n]/(2*n + 1); Array[A376636, 35, 0] (* Paolo Xausa, Aug 04 2025 *)
-
PARI
a(n) = 9^n*binomial(2*n/3+1/3, n)/(2*n+1);
Formula
a(n) = 9^n * binomial(2*n/3 + 1/3,n)/(2*n+1).
From Seiichi Manyama, Jun 20 2025: (Start)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)).
a(3*n+1) = 0 for n > 0. (End)
D-finite with recurrence n*(n-2)*a(n) +54*(2*n-5)*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 30 2025