A004987
a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k + 1). 3-central binomial coefficients.
Original entry on oeis.org
1, 3, 18, 126, 945, 7371, 58968, 480168, 3961386, 33011550, 277297020, 2344420260, 19927572210, 170150808870, 1458435504600, 12542545339560, 108179453553705, 935434098376155, 8107095519260010, 70403724246205350, 612512400941986545, 5337608065351597035, 46582761297613937760
Offset: 0
Joe Keane (jgk(AT)jgk.org)
G.f.: 1 + 3*x + 18*x^2 + 126*x^3 + 945*x^4 + 7371*x^5 + 58968*x^6 + 480168*x^7 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- A. Straub, V. H. Moll, and T. Amdeberhan, The p-adic valuation of k-central binomial coefficients, Acta Arith. 140 (2009) 31-41, eq (1.10).
-
List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
-
[1] cat [3^n*&*[3*k+1: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
-
a:= n-> (3^n/n!)*mul(3*k+1, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
-
Table[(-9)^n Binomial[-1/3, n], {n, 0, 25}] (* Jean-François Alcover, Sep 28 2016, after Peter Luschny *)
-
a(n) = prod(k=0, n-1, 3*k + 1)*3^n/n! \\ Michel Marcus, Jun 30 2013
-
my(x='x, y='y);
R = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(20, R, [x,y]) \\ Gheorghe Coserea, Jul 01 2016
-
Vec((1-9*x+O(x^25))^(-1/3)) \\ yields the same as:
apply( {A004987(n)=prod(k=0, n-1, 9*k+3)\n!}, [0..24]) \\ M. F. Hasler, Nov 12 2024
-
[9^n*rising_factorial(1/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
A078532
Coefficients of power series that satisfies A(x)^3 - 9*x*A(x)^4 = 1, A(0)=1.
Original entry on oeis.org
1, 3, 27, 315, 4158, 59049, 880308, 13586859, 215233605, 3479417370, 57168561996, 951892141473, 16026585711660, 272383068872700, 4666865660812044, 80521573261807755, 1397858693681272230, 24398716826612190447, 427921056863230599900, 7537621933880388620010
Offset: 0
A(x)^3 - 9x*A(x)^4 = 1 since A(x)^3 = 1 +9x +108x^2 +1458x^3 +21060x^4 +... and A(x)^4 = 1 +12x +162x^2 +2340x^3 +... also a(2)=3^3, a(5)=3^10.
-
Table[3^(2n) Binomial[(4n-2)/3,n]/(n+1),{n,0,20}] (* Harvey P. Dale, Nov 03 2011 *)
-
for(n=0,25, print1(9^n * binomial((4*n-2)/3, n)/(n+1), ", ")) \\ G. C. Greubel, Jan 26 2017
A245114
G.f. A(x) satisfies A(x)^3 = 1 + 9*x*A(x)^5.
Original entry on oeis.org
1, 3, 36, 585, 10935, 221697, 4740120, 105225318, 2402040420, 56029889025, 1329627118248, 31998624800220, 779102941714461, 19157195459506230, 475034438632316400, 11865382635213387504, 298265217964573747095, 7539795161286074350785, 191548870595159091038640, 4888023169106780049244275
Offset: 0
G.f.: A(x) = 1 + 3*x + 36*x^2 + 585*x^3 + 10935*x^4 + 221697*x^5 +...
where A(x)^3 = 1 + 9*x*A(x)^5:
A(x)^3 = 1 + 9*x + 135*x^2 + 2430*x^3 + 48195*x^4 + 1015740*x^5 +...
A(x)^5 = 1 + 15*x + 270*x^2 + 5355*x^3 + 112860*x^4 + 2480058*x^5 +...
-
rec:= 2*a(n+3)*(n+3)*(n+2)*(n+1)*(2*n+7)=135*a(n)*(5*n+1)*(5*n+4)*(5*n+7)*(5*n+13):
f:= gfun:-rectoproc({rec,a(0)=1,a(1)=3,a(2)=36},a(n),remember):
map(f, [$0..30]); # Robert Israel, Jan 30 2018
-
nmax = 19; sol = {a[0] -> 1};
Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x]^3 - (1 + 9 x A[x]^5) + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
sol /. HoldPattern[a[n_] -> k_] :> Set[a[n], k];
a /@ Range[0, nmax] (* Jean-François Alcover, Nov 01 2019 *)
-
/* From A(x)^3 = 1 + 9*x*A(x)^5 : */
{a(n) = local(A=1+x);for(i=1,n,A=(1 + 9*x*A^5 +x*O(x^n))^(1/3));polcoeff(A,n)}
for(n=0,20,print1(a(n),", "))
-
{a(n) = 9^n * binomial((5*n - 2)/3, n) / (2*n+1)}
for(n=0,20,print1(a(n),", "))
A008931
Expansion of (2/(1+sqrt(1-36*x)))^(1/3).
Original entry on oeis.org
1, 3, 45, 936, 22572, 592515, 16434495, 473825700, 14058408519, 426438391743, 13164565835421, 412255067017248, 13064028812911440, 418149414542496168, 13498863325944967656, 439006511643775469856, 14369623854340007790108, 473027210589699351461700
Offset: 0
-
a:=[1];; for n in [2..20] do a[n]:=6*(5-21*(n-1)+18*(n-1)^2)*a[n-1]/((n-1)*(3*n-2)); od; a; # G. C. Greubel, Sep 13 2019
-
I:=[1]; [n le 1 select I[n] else 6*(5-21*(n-1)+18*(n-1)^2)*Self(n-1)/((n-1)*(3*n-2)): n in [1..20]]; // G. C. Greubel, Sep 13 2019
-
seq(9^n*binomial(2*n +1/3, n)/(6*n+1), n=0..20); # G. C. Greubel, Sep 13 2019
-
CoefficientList[Series[Surd[2/(1+Sqrt[1-36x]),3],{x,0,20}],x] (* Harvey P. Dale, Aug 12 2016 *)
Table[9^n Binomial[2 n + 1/3, n]/(6 n + 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 12 2016 *)
-
my(x='x+O('x^20)); Vec((2/(1+sqrt(1-36*x)))^(1/3)) \\ G. C. Greubel, Apr 11 2017
-
[9^n*binomial(2*n +1/3, n)/(6*n+1) for n in (0..20)] # G. C. Greubel, Sep 13 2019
A376282
G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^7)^(1/3).
Original entry on oeis.org
1, 3, 54, 1368, 40365, 1299078, 44223732, 1565864784, 57079952046, 2127818007315, 80742077597610, 3108398557803480, 121107814518484872, 4766365291226837508, 189209375036491438800, 7567095678024459993120, 304603864960375133224533, 12331716699093681951702810
Offset: 0
-
A376282[n_] := 9^n*Binomial[(7*n + 1)/3, n]/(7*n + 1);
Array[A376282, 20, 0] (* Paolo Xausa, Aug 04 2025 *)
-
a(n) = 9^n*binomial(7*n/3+1/3, n)/(7*n+1);
A247029
G.f. A(x) satisfies A(x) = A(x)^4 - 9*x.
Original entry on oeis.org
1, 3, -18, 180, -2187, 29484, -424116, 6377292, -99034650, 1576075644, -25569752274, 421325812440, -7031733125508, 118620405322020, -2019349799669160, 34647126360607440, -598525520999144643, 10401492640172342940, -181721630178565389900, 3189811189331825319492
Offset: 0
G.f.: A(x) = 1 + 3*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +...
where
A(x)^4 = 1 + 12*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +...
-
FullSimplify[Table[-(-1)^n * 3^(2*n-1) * 4^(n-1) * Gamma[n/3 + 1/6] * Gamma[2*n/3 - 1/6] / (Pi * Gamma[n + 1]), {n, 0, 20}]] (* Vaclav Kotesovec, Nov 18 2017 *)
-
{a(n)=polcoeff(x/serreverse(x*(1+9*x +x^2*O(x^n))^(1/3)), n)}
for(n=0, 25, print1(a(n), ", "))
A385205
G.f. A(x) satisfies A(x) = ( 1 + 25*x*A(x)^4 )^(1/5).
Original entry on oeis.org
1, 5, 50, 500, 4375, 27500, 0, -3562500, -70078125, -876562500, -6926562500, 0, 1189169921875, 25690820312500, 346441406250000, 2911880859375000, 0, -550017993164062500, -12339622131347656250, -171953389892578125000, -1487552714691162109375, 0
Offset: 0
A377269
G.f. A(x) satisfies A(x) = (1 - 9*x*A(x))^(2/3).
Original entry on oeis.org
1, -6, 27, -90, 189, 0, -1782, 6318, 0, -90882, 360126, 0, -5985819, 24931800, 0, -446371074, 1912892355, 0, -35840971530, 156454458930, 0, -3022929941616, 13367712796110, 0, -264079216747476, 1179032268616902, 0, -23685874363658232, 106533987128598645, 0
Offset: 0
-
A377269[n_] := 9^n*Binomial[(n - 5)/3, n]/(n + 1);
Array[A377269, 35, 0] (* Paolo Xausa, Aug 05 2025 *)
-
a(n) = 9^n*binomial(n/3-5/3, n)/(n+1);
A385117
G.f. A(x) satisfies A(x) = 1 + 9*x*A(x)^(2/3).
Original entry on oeis.org
1, 9, 54, 243, 810, 1701, 0, -16038, -56862, 0, 817938, 3241134, 0, -53872371, -224386200, 0, 4017339666, 17216031195, 0, -322568743770, -1408090130370, 0, 27206369474544, 120309415164990, 0, -2376712950727284, -10611290417552118, 0, 213172869272924088
Offset: 0
-
A385117[n_] := 9^n*Binomial[2*n/3 + 1, n]/(2*n/3 + 1);
Array[A385117, 35, 0] (* Paolo Xausa, Aug 01 2025 *)
-
a(n) = 9^n*binomial(2*n/3+1, n)/(2*n/3+1);
A385207
G.f. A(x) satisfies A(x) = ( 1 + 49*x*A(x)^6 )^(1/7).
Original entry on oeis.org
1, 7, 147, 3430, 79233, 1714314, 32471124, 450360372, 0, -313409171166, -15459345780879, -537166232508360, -15185812043764453, -348420909370148580, -5588125164812112720, 0, 4783756561471246040577, 254794190560328322173970, 9445124186699596552669050
Offset: 0
Showing 1-10 of 12 results.
Comments