cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A004987 a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k + 1). 3-central binomial coefficients.

Original entry on oeis.org

1, 3, 18, 126, 945, 7371, 58968, 480168, 3961386, 33011550, 277297020, 2344420260, 19927572210, 170150808870, 1458435504600, 12542545339560, 108179453553705, 935434098376155, 8107095519260010, 70403724246205350, 612512400941986545, 5337608065351597035, 46582761297613937760
Offset: 0

Views

Author

Joe Keane (jgk(AT)jgk.org)

Keywords

Comments

Diagonal of rational function R(x,y) = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y). - Gheorghe Coserea, Jul 01 2016
This is the k = 3 variant of the k-central binomial coefficients c(n,k) with g.f. (1 - k^2*x)^(-1/k), which yield the usual central binomial coefficients A001405 for k = 2. - M. F. Hasler, Nov 12 2024

Examples

			G.f.: 1 + 3*x + 18*x^2 + 126*x^3 + 945*x^4 + 7371*x^5 + 58968*x^6 + 480168*x^7 + ...
		

Crossrefs

Related to diagonal of rational functions: A268545-A268555.

Programs

  • GAP
    List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
  • Magma
    [1] cat [3^n*&*[3*k+1: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
    
  • Maple
    a:= n-> (3^n/n!)*mul(3*k+1, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
  • Mathematica
    Table[(-9)^n Binomial[-1/3, n], {n, 0, 25}] (* Jean-François Alcover, Sep 28 2016, after Peter Luschny *)
  • PARI
    a(n) = prod(k=0, n-1, 3*k + 1)*3^n/n! \\ Michel Marcus, Jun 30 2013
    
  • PARI
    my(x='x, y='y);
    R = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y);
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(20, R, [x,y])  \\ Gheorghe Coserea, Jul 01 2016
    
  • PARI
    Vec((1-9*x+O(x^25))^(-1/3)) \\ yields the same as:
    apply( {A004987(n)=prod(k=0, n-1, 9*k+3)\n!}, [0..24]) \\ M. F. Hasler, Nov 12 2024
    
  • Sage
    [9^n*rising_factorial(1/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
    

Formula

G.f.: (1 - 9*x)^(-1/3).
a(n) = (3^n/n!)*A007559(n), n >= 1, a(0) := 1.
a(n) ~ Gamma(1/3)^-1*n^(-2/3)*3^(2*n)*{1 - 1/9*n^-1 + ...}.
Representation as n-th moment of a positive function on (0, 9): a(n) = Integral_{x=0..9} ( x^n*(1/(Pi*sqrt(3)*6*(x/9)^(2/3)*(1-x/9)^(1/3))) ), n >= 0. This function is the solution of the Hausdorff moment problem on (0, 9) with moments equal to a(n). As a consequence this representation is unique. - Karol A. Penson, Jan 30 2003
D-finite with recurrence: n*a(n) + 3*(2-3*n)*a(n-1)=0. - R. J. Mathar, Jun 07 2013
0 = a(n) * (81*a(n+1) - 15*a(n+2)) + a(n+1) * (-3*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
G.f. A(x)=:y satisfies 0 = y'' * y - 4 * y' * y'. - Michael Somos, Jan 27 2014
a(n) = (-9)^n*binomial(-1/3, n). - Peter Luschny, Mar 23 2014
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([1/3], [1], 9*x). - Karol A. Penson, Dec 19 2015
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*(12 + log(3)))/32 = 1.3980385924595932... - Ilya Gutkovskiy, Jul 01 2016
Binomial transform of A216316. - Peter Bala, Jul 02 2023
From Peter Bala, Mar 31 2024: (Start)
a(n) = (9^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/3, k)* binomial(-1/3, 2*n - k).
(9^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = A004988(n).
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 18^n/(2*n)! * Product_{k = 1..n} (6*k - 1)*(3*k - 2). (End)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^3). - Seiichi Manyama, Jun 20 2025

Extensions

More terms from Ralf Stephan, Mar 13 2004
More terms from Benoit Cloitre, Jun 05 2004

A078532 Coefficients of power series that satisfies A(x)^3 - 9*x*A(x)^4 = 1, A(0)=1.

Original entry on oeis.org

1, 3, 27, 315, 4158, 59049, 880308, 13586859, 215233605, 3479417370, 57168561996, 951892141473, 16026585711660, 272383068872700, 4666865660812044, 80521573261807755, 1397858693681272230, 24398716826612190447, 427921056863230599900, 7537621933880388620010
Offset: 0

Views

Author

Paul D. Hanna, Nov 28 2002

Keywords

Comments

If A(x) = Sum_{k>=1} a(k)x^k satisfies A(x)^n - (n^2)*x*A(x)^(n+1) = 1, then a(n-1) = n^(2n-3) and a(2n-1) = n^(4n-2) (conjecture).
If A(x) = Sum_{k>=1} a(k)x^k satisfies A(x)^n - (n^2)*x*A(x)^(n+1) = 1, then a(k)=n^(2k)*binomial(k/n+1/n+k-1,k)/(k+1) and, consequently, a(n-1) = n^(2n-3) and a(2n-1) = n^(4n-2). - Emeric Deutsch, Dec 10 2002
A generalization of the Catalan sequence (A000108) since for n = 1 the equation A(x)^n -(n^2)*x*A(x)^(n+1) = 1 reduces to A(x)=1+xA(x)^2. - Emeric Deutsch, Dec 10 2002
Radius of convergence of g.f. A(x) is r = 1/(3*4^(4/3)) where A(r) = 4^(1/3). - Paul D. Hanna, Jul 24 2012
Self-convolution cube yields A214668.

Examples

			A(x)^3 - 9x*A(x)^4 = 1 since A(x)^3 = 1 +9x +108x^2 +1458x^3 +21060x^4 +... and A(x)^4 = 1 +12x +162x^2 +2340x^3 +... also a(2)=3^3, a(5)=3^10.
		

Crossrefs

Programs

  • Mathematica
    Table[3^(2n) Binomial[(4n-2)/3,n]/(n+1),{n,0,20}] (* Harvey P. Dale, Nov 03 2011 *)
  • PARI
    for(n=0,25, print1(9^n * binomial((4*n-2)/3, n)/(n+1), ", ")) \\ G. C. Greubel, Jan 26 2017

Formula

a(n) = 3^(2n)*binomial(4n/3-2/3, n)/(n+1). - Emeric Deutsch, Dec 10 2002
Sequence with offset 1 is expansion of reversion of g.f. x*(1-9*x)^(1/3), which equals x times the g.f. of A004990.
a(n) ~ 2^(8*n/3-5/6) * 3^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 03 2014
D-finite with recurrence n*(n-1)*(n+1)*a(n) -216*(4*n-5)*(2*n-1)*(4*n-11)*a(n-3)=0. - R. J. Mathar, Mar 24 2023
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^5). - Seiichi Manyama, Jun 20 2025

Extensions

More terms from Harvey P. Dale, Nov 03 2011

A376636 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^2)^(1/3).

Original entry on oeis.org

1, 3, 9, 18, 0, -162, -567, 0, 8019, 31590, 0, -520506, -2160756, 0, 38480265, 164549880, 0, -3072083274, -13390246485, 0, 258054995016, 1139882486490, 0, -22474826957232, -100257845970825, 0, 2011064804461548, 9039247392729582, 0, -183769714890451800
Offset: 0

Views

Author

Seiichi Manyama, Oct 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A376636[n_] := 9^n*Binomial[(2*n + 1)/3, n]/(2*n + 1);
    Array[A376636, 35, 0] (* Paolo Xausa, Aug 04 2025 *)
  • PARI
    a(n) = 9^n*binomial(2*n/3+1/3, n)/(2*n+1);

Formula

a(n) = 9^n * binomial(2*n/3 + 1/3,n)/(2*n+1).
From Seiichi Manyama, Jun 20 2025: (Start)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)).
a(3*n+1) = 0 for n > 0. (End)
D-finite with recurrence n*(n-2)*a(n) +54*(2*n-5)*(n-4)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A008931 Expansion of (2/(1+sqrt(1-36*x)))^(1/3).

Original entry on oeis.org

1, 3, 45, 936, 22572, 592515, 16434495, 473825700, 14058408519, 426438391743, 13164565835421, 412255067017248, 13064028812911440, 418149414542496168, 13498863325944967656, 439006511643775469856, 14369623854340007790108, 473027210589699351461700
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1];; for n in [2..20] do a[n]:=6*(5-21*(n-1)+18*(n-1)^2)*a[n-1]/((n-1)*(3*n-2)); od; a; # G. C. Greubel, Sep 13 2019
  • Magma
    I:=[1]; [n le 1 select I[n] else 6*(5-21*(n-1)+18*(n-1)^2)*Self(n-1)/((n-1)*(3*n-2)): n in [1..20]]; // G. C. Greubel, Sep 13 2019
    
  • Maple
    seq(9^n*binomial(2*n +1/3, n)/(6*n+1), n=0..20); # G. C. Greubel, Sep 13 2019
  • Mathematica
    CoefficientList[Series[Surd[2/(1+Sqrt[1-36x]),3],{x,0,20}],x] (* Harvey P. Dale, Aug 12 2016 *)
    Table[9^n Binomial[2 n + 1/3, n]/(6 n + 1), {n, 0, 20}] (* Vladimir Reshetnikov, Oct 12 2016 *)
  • PARI
    my(x='x+O('x^20)); Vec((2/(1+sqrt(1-36*x)))^(1/3)) \\ G. C. Greubel, Apr 11 2017
    
  • Sage
    [9^n*binomial(2*n +1/3, n)/(6*n+1) for n in (0..20)] # G. C. Greubel, Sep 13 2019
    

Formula

From Vladimir Reshetnikov, Oct 12 2016: (Start)
a(n) = 9^n*binomial(2*n + 1/3, n)/(6*n + 1).
D-finite with recurrence: n*(3*n+1)*a(n) = 6*(18*n^2-21*n+5)*a(n-1). (End)
a(n) ~ 2^(2*n-2/3)*3^(2*n-1)/(sqrt(Pi)*n^(3/2)). - Ilya Gutkovskiy, Oct 13 2016
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^9). - Seiichi Manyama, Jun 20 2025
G.f.: 2F1(1/6, 2/3 ; 4/3 ; 36*x). - R. J. Mathar, Jul 30 2025

A376282 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^7)^(1/3).

Original entry on oeis.org

1, 3, 54, 1368, 40365, 1299078, 44223732, 1565864784, 57079952046, 2127818007315, 80742077597610, 3108398557803480, 121107814518484872, 4766365291226837508, 189209375036491438800, 7567095678024459993120, 304603864960375133224533, 12331716699093681951702810
Offset: 0

Views

Author

Seiichi Manyama, Oct 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A376282[n_] := 9^n*Binomial[(7*n + 1)/3, n]/(7*n + 1);
    Array[A376282, 20, 0] (* Paolo Xausa, Aug 04 2025 *)
  • PARI
    a(n) = 9^n*binomial(7*n/3+1/3, n)/(7*n+1);

Formula

a(n) = 9^n * binomial(7*n/3 + 1/3,n)/(7*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^11). - Seiichi Manyama, Jun 20 2025
D-finite with recurrence 8*n*(n-1)*(n-2)*(4*n-5)*(2*n-1)*(4*n+1)*a(n) -189*(7*n-11)*(7*n-17)*(7*n-2)*(7*n-20)*(7*n-5)*(7*n-8)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A247029 G.f. A(x) satisfies A(x) = A(x)^4 - 9*x.

Original entry on oeis.org

1, 3, -18, 180, -2187, 29484, -424116, 6377292, -99034650, 1576075644, -25569752274, 421325812440, -7031733125508, 118620405322020, -2019349799669160, 34647126360607440, -598525520999144643, 10401492640172342940, -181721630178565389900, 3189811189331825319492
Offset: 0

Views

Author

Paul D. Hanna, Sep 09 2014

Keywords

Examples

			G.f.: A(x) = 1 + 3*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +...
where
A(x)^4 = 1 + 12*x - 18*x^2 + 180*x^3 - 2187*x^4 + 29484*x^5 - 424116*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    FullSimplify[Table[-(-1)^n * 3^(2*n-1) * 4^(n-1) * Gamma[n/3 + 1/6] * Gamma[2*n/3 - 1/6] / (Pi * Gamma[n + 1]), {n, 0, 20}]] (* Vaclav Kotesovec, Nov 18 2017 *)
  • PARI
    {a(n)=polcoeff(x/serreverse(x*(1+9*x +x^2*O(x^n))^(1/3)), n)}
    for(n=0, 25, print1(a(n), ", "))

Formula

G.f.: x / Series_Reversion( x*(1 + 9*x)^(1/3) ).
Recurrence: (n-2)*(n-1)*n*a(n) = -216*(2*n - 5)*(4*n - 13)*(4*n - 7)*a(n-3). - Vaclav Kotesovec, Nov 18 2017
a(n) ~ -(-1)^n * 2^(8*n/3 - 13/6) * 3^n / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Nov 18 2017
G.f. A(x) satisfies A(x) = 1/A(-x/A(x)^5). - Seiichi Manyama, Jun 20 2025

A245113 G.f. A(x) satisfies A(x)^2 = 1 + 4*x*A(x)^6.

Original entry on oeis.org

1, 2, 22, 340, 6118, 120060, 2492028, 53798888, 1195684230, 27175425004, 628705751828, 14756641134872, 350529497005532, 8410852483002200, 203561027031883320, 4963404936414528720, 121810229481173225670, 3006555636255509030220, 74585744314812449403300, 1858695101618327423328312
Offset: 0

Views

Author

Paul D. Hanna, Jul 31 2014

Keywords

Comments

Radius of convergence of g.f. A(x) is r = 1/27 where A(r) = sqrt(3/2).

Examples

			G.f.: A(x) = 1 + 2*x + 22*x^2 + 340*x^3 + 6118*x^4 + 120060*x^5 + ...
where A(x)^2 = 1 + 4*x*A(x)^6:
A(x)^2 = 1 + 4*x + 48*x^2 + 768*x^3 + 14080*x^4 + 279552*x^5 + ...
A(x)^6 = 1 + 12*x + 192*x^2 + 3520*x^3 + 69888*x^4 + 1462272*x^5 + ...
Related series:
A(x)^5 = 1 + 10*x + 150*x^2 + 2660*x^3 + 51750*x^4 + 1068012*x^5 + ...
A(x)^10 = 1 + 20*x + 400*x^2 + 8320*x^3 + 179200*x^4 + 3969024*x^5 + ...
where A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5.
		

Crossrefs

Programs

  • Maple
    A245113:=n->4^n*binomial((6*n-1)/2,n)/(4*n+1): seq(A245113(n), n=0..30); # Wesley Ivan Hurt, Aug 11 2015
  • Mathematica
    Table[4^n*Binomial[(6 n - 1)/2, n]/(4 n + 1), {n, 0, 20}] (* Wesley Ivan Hurt, Aug 11 2015 *)
  • PARI
    /* From A(x)^2 = 1 + 4*x*A(x)^6 : */
    {a(n) = local(A=1+x);for(i=1,n,A=sqrt(1 + 4*x*A^6 +x*O(x^n)));polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n) = 4^n * binomial((6*n - 1)/2, n) / (4*n + 1)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* From A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5 : */
    {a(n) = local(A=1+x);for(i=1,n,A = sqrt(1 + 4*x^2*A^10 +x*O(x^n)) + 2*x*A^5);polcoeff(A,n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = 4^n * binomial((6*n - 1)/2, n) / (4*n + 1).
G.f. A(x) satisfies A(x) = sqrt(1 + 4*x^2*A(x)^10) + 2*x*A(x)^5.
G.f.: A(x) = sqrt(D(4*x)), where D(x) is the g.f. of A001764. - Werner Schulte, Aug 10 2015
From Karol A. Penson, Mar 19 2024: (Start)
a(n) = 4^n*binomial(3*n+1/2,n)/(6*n+1).
G.f.: 3F2([1/6, 1/2, 5/6], [3/4, 5/4], 27*x).
G.f.: sqrt(2)*sqrt((-(sqrt(1 - 27*x) + 3*i*sqrt(3)*sqrt(x))^(1/3) + (sqrt(1 - 27*x) - 3*i*sqrt(3)*sqrt(x))^(1/3))*i)*3^(3/4)/(6*x^(1/4)), where i is the imaginary unit.
a(n) = Integral_{x=0...27} x^n*W(x), where W(x) = h1(x) + h2(x) + h3(x) and
h1(x) = 2^(2/3)*3F2([-1/12, 1/6, 5/12], [1/3, 2/3], x/27)/(4*Pi*x^(5/6));
h2(x) = -3F2([1/4, 1/2, 3/4], [2/3, 4/3], x/27)/(12*Pi*sqrt(x));
h3(x) = -2^(1/3)*3F2([7/12, 5/6, 13/12], [4/3, 5/3], x/27)/(576*Pi*x^(1/6)).
This integral representation is unique as W(x) is the solution of the Hausdorff power moment problem on x = (0, 27). Using only the definition of a(n), W(x) can be proven to be positive. W(x) is singular at x = 0 and for x > 0 is monotonically decreasing to zero at x = 27. For x -> 27, W'(x) tends to -infinity. (End)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^10). - Seiichi Manyama, Jun 20 2025
a(n) ~ 27^n / (4 * n^(3/2) * sqrt(2*Pi)). - Amiram Eldar, Sep 04 2025

A385119 G.f. A(x) satisfies A(x) = 1 + 9*x*A(x)^(5/3).

Original entry on oeis.org

1, 9, 135, 2430, 48195, 1015740, 22320522, 505692720, 11727186075, 277005649635, 6641224015140, 161193712078854, 3953072078945730, 97801207953712200, 2438092322304120720, 61182608813245896840, 1544295394480280288715, 39180450803555268621540
Offset: 0

Views

Author

Seiichi Manyama, Jun 18 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A385119[n_] := 9^n*Binomial[#, n]/# & [5*n/3 + 1];
    Array[A385119, 20, 0] (* Paolo Xausa, Aug 05 2025 *)
  • PARI
    a(n) = 9^n*binomial(5*n/3+1, n)/(5*n/3+1);

Formula

a(n) = 9^n * binomial(5*n/3+1,n)/(5*n/3+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^(7/3)).
G.f.: B(x)^3, where B(x) is the g.f. of A245114.
D-finite with recurrence 2*n*(n-1)*(n-2)*(2*n+3)*a(n) - 135*(5*n-9)*(5*n-3)*(5*n-12)*(5*n-6)*a(n-3) = 0. - R. J. Mathar, Jul 30 2025
a(n) ~ 3^(n+1) * 5^(5*n/3+1/2) / (sqrt(Pi) * 2^(2*(n+3)/3) * n^(3/2)). - Amiram Eldar, Sep 02 2025

A386416 G.f. A(x) satisfies A(x) = (1 + 9*x*A(x)^8)^(1/3).

Original entry on oeis.org

1, 3, 63, 1881, 65610, 2499336, 100777122, 4228144596, 182674383705, 8072369224920, 363154406671485, 16576444298006658, 765806677899249168, 35739548618003938440, 1682429522012566325460, 79793991407758199002740, 3809208342822290233767522, 182890356905449116974950200
Offset: 0

Views

Author

Seiichi Manyama, Jul 21 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A386416[n_] := 9^n*Binomial[(8*n + 1)/3, n]/(8*n + 1);
    Array[A386416, 20, 0] (* Paolo Xausa, Aug 01 2025 *)
  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = 9^n*apr(n, 8/3, 1/3);

Formula

a(n) = 9^n * binomial((8*n+1)/3,n)/(8*n+1).
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^13).
D-finite with recurrence 5*n*(n-1)*(n-2)*(5*n-8)*(5*n-11)*(5*n+1)*(5*n-2)*a(n) -3456*(8*n-11)*(8*n-5)*(4*n-1)*(8*n-23)*(2*n-5)*(8*n-17)*(4*n-7)*a(n-3)=0. - R. J. Mathar, Jul 30 2025

A377267 G.f. A(x) satisfies A(x) = 1/(1 - 9*x*A(x))^(2/3).

Original entry on oeis.org

1, 6, 81, 1386, 26676, 551124, 11939967, 267647490, 6155681103, 144442697256, 3444310087155, 83222570083068, 2033143391152440, 50136558534943776, 1246312401751305306, 31197886757177379570, 785732617740674763684, 19896044539519213482690
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    A377267[n_] := 9^n*Binomial[(5*n - 1)/3, n]/(n + 1);
    Array[A377267, 20, 0] (* Paolo Xausa, Aug 05 2025 *)
  • PARI
    a(n) = 9^n*binomial(5*n/3-1/3, n)/(n+1);

Formula

G.f.: (1/x) * Series_Reversion( x*(1-9*x)^(2/3) ).
a(n) = 9^n * binomial(5*n/3 - 1/3,n)/(n+1).
G.f.: B(x)^2, where B(x) is the g.f. of A245114.
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^(7/2)). - Seiichi Manyama, Jun 22 2025
E.g.f.: (2*hypergeom([2/15, 8/15, 11/15, 14/15], [1/3, 2/3, 2/3, 5/6, 1, 4/3], 5^5*x^3/4) + 12*x*hypergeom([7/15, 13/15, 16/15, 19/15], [2/3, 1, 7/6, 4/3, 4/3, 5/3], 5^5*x^3/4) + 81*x^2*hypergeom([4/5, 6/5, 7/5, 8/5], [4/3, 4/3, 3/2, 5/3, 5/3, 2], 5^5*x^3/4))/2. - Stefano Spezia, Jun 22 2025
From Karol A. Penson, Aug 23 2025: (Start)
a(n) = Integral_{x=0..15*5^(2/3)*2^(1/3)/2} x^n*W(x)*dx, where W(x) can be represented in terms of 4 different generalized hypergeometric functions of type 4F3 of argument 4*x^3/84375, W(x) = W1(x) + W2(x) + W3(x) + W4(x):
W1(x) = sqrt(15)*3^(7/10)*csc((2*Pi)/5)*sin((3*Pi)/10)*hypergeom([-1/5, 2/15, 3/10, 7/15], [1/5, 2/5, 3/5], (4*x^3)/84375)/(18*Pi*x^(3/5)),
W2(x) = -sqrt(15)*3^(3/10)*sec(Pi/10)*sin((3*Pi)/10)*x^(3/5)*hypergeom([1/5, 8/15, 7/10, 13/15], [3/5, 4/5, 7/5], (4*x^3)/84375)/(1350*Pi),
W3(x) = -sqrt(15)*3^(1/10)*sec((3*Pi)/10)*sin(Pi/10)*x^(6/5)*hypergeom([2/5, 11/15, 9/10, 16/15], [4/5, 6/5, 8/5], (4*x^3)/84375)/(30375*Pi),
W4(x) = -sqrt(15)*3^(9/10)*csc(Pi/5)*sin(Pi/10)*x^(9/5)*hypergeom([3/5, 14/15, 11/10, 19/15], [6/5, 7/5, 9/5], (4*x^3)/84375)/(911250*Pi).
W(x) is a positive function on x = (0,15*5^(2/3)*2^(1/3)/2), is singular at x=0 with the singularity x^(-3/5), and tends to zero at x = 15*5^(2/3)*2^(1/3)/2.
Thus a(n) is a positive definite sequence. This representation is unique as W(x) is the solution of the Hausdorff moment problem. (End)
a(n) ~ 3^n * 5^(5*n/3+1/6) / (sqrt(Pi) * 2^(2*(n+1)/3) * n^(3/2)). - Amiram Eldar, Sep 02 2025
Showing 1-10 of 10 results.