A376679 Number of strict integer factorizations of n into nonsquarefree factors > 1.
1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0
Offset: 1
Keywords
Examples
The a(3456) = 28 factorizations are: (4*8*9*12) (4*9*96) (36*96) (3456) (8*9*48) (4*864) (4*12*72) (48*72) (4*16*54) (54*64) (4*18*48) (8*432) (4*24*36) (9*384) (4*27*32) (12*288) (4*8*108) (16*216) (8*12*36) (18*192) (8*16*27) (24*144) (8*18*24) (27*128) (9*12*32) (32*108) (9*16*24) (12*16*18)
Links
- Dominic McCarty, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
JavaScript
function nextNonSquareFree(val){val+=1;for(let i=2;i*i<=val;i+=1){if(val%i==0&&val%(i*i)==0){return val}}return nextNonSquareFree(val)}function strictFactorCount(val,maxFactor){if(val==1){return 1}let sum=0;while(maxFactor
Dominic McCarty, Oct 19 2024 -
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[n],UnsameQ@@#&&NoneTrue[#,SquareFreeQ]&]],{n,100}] (* corrected by Gus Wiseman, Jun 27 2025 *)