cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A376729 Expansion of (1 - x^2 - x^3)/((1 - x^2 - x^3)^2 - 4*x^5).

Original entry on oeis.org

1, 0, 1, 1, 1, 6, 2, 15, 16, 29, 71, 73, 212, 276, 541, 1016, 1497, 3189, 4825, 9162, 16022, 26763, 50424, 82869, 151851, 262705, 456520, 820328, 1401913, 2511824, 4361521, 7657481, 13528913, 23509678, 41633002, 72630919, 127709888, 224418509, 392539055, 691382201
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1-x^2-x^3)/((1-x^2-x^3)^2-4*x^5))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k, 2*n-4*k));

Formula

a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k,2*n-4*k).

A376724 Expansion of 1/((1 - x^3 - x^4)^2 - 4*x^7).

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 3, 10, 3, 4, 28, 28, 9, 60, 126, 66, 115, 396, 403, 292, 1007, 1724, 1281, 2366, 5736, 6128, 6468, 16202, 24888, 23664, 43055, 85158, 97156, 124044, 257474, 374538, 421785, 740324, 1294129, 1577756, 2217676, 4085272, 5813587, 7319572, 12370630
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/((1-x^3-x^4)^2-4*x^7))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*k+2, 2*n-6*k+1))/2;

Formula

a(n) = 2*a(n-3) + 2*a(n-4) - a(n-6) + 2*a(n-7) - a(n-8).
a(n) = (1/2) * Sum_{k=0..floor(n/3)} binomial(2*k+2,2*n-6*k+1).

A376726 Expansion of (1 + x^2 - x^3)/((1 + x^2 - x^3)^2 - 4*x^2).

Original entry on oeis.org

1, 0, 3, 1, 5, 10, 8, 35, 30, 85, 137, 201, 476, 616, 1357, 2172, 3735, 7193, 11213, 21782, 36064, 64095, 115130, 193769, 354737, 604049, 1074008, 1889968, 3273785, 5839608, 10106859, 17880785, 31325077, 54793282, 96710296, 168730043, 297336790, 520856765, 913684857
Offset: 0

Views

Author

Seiichi Manyama, Oct 03 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec((1+x^2-x^3)/((1+x^2-x^3)^2-4*x^2))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k+1, 2*n-4*k+1));

Formula

a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k+1,2*n-4*k+1).

A376725 Expansion of 1/((1 - x^4 - x^5)^2 - 4*x^9).

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 0, 0, 3, 10, 3, 0, 4, 28, 28, 4, 5, 60, 126, 60, 11, 110, 396, 396, 117, 188, 1001, 1716, 1009, 462, 2191, 5720, 5729, 2592, 4564, 15920, 24320, 16482, 12036, 39168, 84000, 84750, 51927, 93024, 249292, 353738, 269962, 258324, 666932, 1250142
Offset: 0

Views

Author

Seiichi Manyama, Oct 02 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/((1-x^4-x^5)^2-4*x^9))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*k+2, 2*n-8*k+1))/2;

Formula

a(n) = 2*a(n-4) + 2*a(n-5) - a(n-8) + 2*a(n-9) - a(n-10).
a(n) = (1/2) * Sum_{k=0..floor(n/4)} binomial(2*k+2,2*n-8*k+1).

A376787 Expansion of (1 - x^2 + x^3)/((1 - x^2 + x^3)^2 - 4*x^3).

Original entry on oeis.org

1, 0, 1, 3, 1, 10, 6, 21, 36, 43, 127, 139, 340, 540, 881, 1832, 2653, 5427, 8829, 15550, 28642, 46805, 87756, 147575, 262751, 465591, 797864, 1437816, 2471553, 4383696, 7689305, 13402819, 23752217, 41305842, 72916606, 127708213, 223809012, 394045411
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-x^2+x^3)/((1-x^2+x^3)^2-4x^3),{x,0,40}],x] (* or *) LinearRecurrence[{0,2,2,-1,2,-1},{1,0,1,3,1,10},40] (* Harvey P. Dale, Aug 11 2025 *)
  • PARI
    my(N=40, x='x+O('x^N)); Vec((1-x^2+x^3)/((1-x^2+x^3)^2-4*x^3))
    
  • PARI
    a(n) = sum(k=0, n\2, binomial(2*k+1, 2*n-4*k));

Formula

a(n) = 2*a(n-2) + 2*a(n-3) - a(n-4) + 2*a(n-5) - a(n-6).
a(n) = Sum_{k=0..floor(n/2)} binomial(2*k+1,2*n-4*k).
Showing 1-5 of 5 results.