cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376792 Expansion of 1/sqrt((1 - x^4)^2 - 4*x).

Original entry on oeis.org

1, 2, 6, 20, 71, 258, 954, 3572, 13501, 51404, 196858, 757472, 2926097, 11341032, 44080770, 171755976, 670664951, 2623732322, 10281616176, 40350944112, 158573538071, 623930435834, 2457658576132, 9690467310480, 38244489565051, 151064227161784, 597165099484632
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Comments

From Seiichi Manyama, Apr 30 2025: (Start)
Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,1),(4,4).
Diagonal of the rational function 1 / (1 - x - y - x^4*y^4). (End)

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x^4)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*n-7*k, k)*binomial(2*n-8*k, n-4*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-7*k,k) * binomial(2*n-8*k,n-4*k).