cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376791 Expansion of 1/sqrt((1 - x^3)^2 - 4*x).

Original entry on oeis.org

1, 2, 6, 21, 76, 282, 1065, 4074, 15732, 61193, 239406, 941064, 3713701, 14703896, 58383138, 232383841, 926943678, 3704410890, 14828984641, 59450138412, 238659074286, 959247218253, 3859777477944, 15546444564846, 62675854384977, 252893414725842, 1021208266423260
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Comments

From Seiichi Manyama, Apr 30 2025: (Start)
Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,1),(3,3).
Diagonal of the rational function 1 / (1 - x - y - x^3*y^3). (End)

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x^3)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-5*k, k)*binomial(2*n-6*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,k) * binomial(2*n-6*k,n-3*k).

A383582 a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*(n-4*k),n-4*k).

Original entry on oeis.org

1, 2, 6, 20, 71, 256, 942, 3512, 13221, 50138, 191260, 733088, 2821037, 10892100, 42174848, 163706656, 636816019, 2481902842, 9689155902, 37882580356, 148313102097, 581365577564, 2281393560802, 8961689897248, 35235582858441, 138657185501870, 546064549476476
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-3*k,k) * Binomial(2*(n-4*k),n-4*k): k in [0..n div 4]]: n in [0..45]]; // Vincenzo Librandi, May 02 2025
  • Mathematica
    Table[Sum[Binomial[n-3*k,k]* Binomial[2*(n-4*k),n-4*k],{k,0,Floor[n/4]}],{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*(n-4*k), n-4*k));
    

Formula

G.f.: 1/sqrt((1 - x^4) * (1 - x^4 - 4*x)).
a(n) ~ (2 + sqrt(2) + sqrt(10 + 8*sqrt(2)))^n / (sqrt((sqrt(5 + 32*sqrt(2)) - 7)*Pi*n) * 2^(n + 7/4)). - Vaclav Kotesovec, May 01 2025

A383572 Expansion of 1/sqrt((1-x^4)^2 - 4*x^5).

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 0, 0, 1, 6, 6, 0, 1, 12, 30, 20, 1, 20, 90, 140, 71, 30, 210, 560, 631, 294, 420, 1680, 3151, 2828, 1680, 4200, 11551, 16704, 13272, 12672, 34651, 72162, 86064, 69960, 102961, 252362, 423390, 446160, 429001, 805508, 1685970, 2393820, 2419561
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (5,0),(0,5),(4,4).
Diagonal of the rational function 1 / (1 - x^5 - y^5 - x^4*y^4).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(k, n-4*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(k,n-4*k).

A383566 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(4,4).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 8, 28, 56, 71, 56, 28, 8, 1, 1, 9, 36, 84, 128, 128, 84, 36, 9, 1, 1, 10, 45, 120, 213, 258, 213, 120, 45, 10, 1, 1, 11, 55, 165, 334, 474, 474, 334, 165, 55, 11, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,  1,   1,   1,   1, ...
  1, 2,  3,  4,   5,   6,   7, ...
  1, 3,  6, 10,  15,  21,  28, ...
  1, 4, 10, 20,  35,  56,  84, ...
  1, 5, 15, 35,  71, 128, 213, ...
  1, 6, 21, 56, 128, 258, 474, ...
  1, 7, 28, 84, 213, 474, 954, ...
		

Crossrefs

Main diagonal gives A376792.

Programs

  • PARI
    a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x-y-x^4*y^4), n), k);

Formula

A(n,k) = A(k,n).
A(n,k) = A(n-1,k) + A(n,k-1) + A(n-4,k-4).
G.f.: 1 / (1 - x - y - x^4*y^4).
Showing 1-4 of 4 results.