cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A376792 Expansion of 1/sqrt((1 - x^4)^2 - 4*x).

Original entry on oeis.org

1, 2, 6, 20, 71, 258, 954, 3572, 13501, 51404, 196858, 757472, 2926097, 11341032, 44080770, 171755976, 670664951, 2623732322, 10281616176, 40350944112, 158573538071, 623930435834, 2457658576132, 9690467310480, 38244489565051, 151064227161784, 597165099484632
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Comments

From Seiichi Manyama, Apr 30 2025: (Start)
Number of lattice paths from (0,0) to (n,n) using steps (1,0),(0,1),(4,4).
Diagonal of the rational function 1 / (1 - x - y - x^4*y^4). (End)

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt((1-x^4)^2-4*x))
    
  • PARI
    a(n) = sum(k=0, n\4, binomial(2*n-7*k, k)*binomial(2*n-8*k, n-4*k));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-7*k,k) * binomial(2*n-8*k,n-4*k).

A383581 a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(2*(n-3*k),n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 74, 270, 1005, 3788, 14418, 55289, 213270, 826614, 3216629, 12558928, 49175136, 193023965, 759299438, 2992534344, 11813985377, 46709675040, 184928644350, 733047010709, 2908981549006, 11555513379450, 45945148281437, 182835149061920, 728149606630164
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[Binomial(n-2*k,k) * Binomial(2*(n-3*k),n-3*k): k in [0..n div 3]]: n in [0..25]]; // Vincenzo Librandi, May 02 2025
  • Mathematica
    Table[Sum[Binomial[n-2*k,k]* Binomial[2*(n-3*k),n-3*k],{k,0,Floor[n/3]}],{n,0,30}] (* Vincenzo Librandi, May 02 2025 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(2*(n-3*k), n-3*k));
    

Formula

G.f.: 1/sqrt((1 - x^3) * (1 - x^3 - 4*x)).

A383571 Expansion of 1/sqrt((1-x^3)^2 - 4*x^4).

Original entry on oeis.org

1, 0, 0, 1, 2, 0, 1, 6, 6, 1, 12, 30, 21, 20, 90, 141, 100, 210, 561, 672, 672, 1681, 3206, 3528, 5125, 11622, 17892, 21253, 38172, 74052, 102565, 141680, 268092, 454741, 622182, 979836, 1790361, 2784366, 3993132, 6741593, 11587758, 17380116, 26551097, 45489082, 74098518
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Comments

Number of lattice paths from (0,0) to (n,n) using steps (4,0),(0,4),(3,3).
Diagonal of the rational function 1 / (1 - x^4 - y^4 - x^3*y^3).

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(n-2*k, k)*binomial(k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k,k) * binomial(k,n-3*k).

A377336 Square array read by antidiagonals: T(n,k) is the number of fully symmetric, k-celled, n-dimensional polyhypercubes; n >= 0, k >= 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Pontus von Brömssen, Oct 25 2024

Keywords

Comments

To be included, a polyhypercube should have all the 2^n*n! symmetries of the n-dimensional hypercube.
Let n >= 1 and m = A171977(n). Then T(n,k) = 0 if neither k nor k-1 is a multiple of m. Also, there exists a number K such that T(n,k) > 0 if k >= K and either k or k-1 is a multiple of m. In particular, T(n,k) > 0 for all sufficiently large k if and only if n is odd. Sketch of proof: Assume that the point of rotation of the symmetries is in the origin and that the center of each cell have integer or half-integer coordinates, depending on whether the point of rotation is in the center of a cell or at the common corner of 2^n cells. The number of cells that are equivalent to a given cell c is n!/(x_0!*x_1!*...)*2^(n-x_0), where x_1, x_2, ... are the frequencies of the absolute values of the nonzero coordinates of c and x_0 is the number of zero coordinates of c. It can be proved that this number is divisible by m unless c is the cell at the origin (in which case x_0 = n and there are no other equivalent cells). (It is sufficient to check the case where all nonzero coordinates have the same absolute value, i.e., that all numbers except 1 in the n-th row of A013609 are divisible by m; the other numbers are multiples of these.) Since either none or all of the cells equivalent to a given cell must be part of the polyhypercube, this proves the first part. For the second part, say that a cell where the absolute values of all coordinates are equal and nonzero is a corner cell, and that a cell with a single nonzero coordinate is a spike cell. Corner cells and spike cells come in sets of 2^n and 2*n equivalent cells, respectively, and the GCD of 2^n and 2*n is already equal to m. Assume that n >= 3 (the case n <= 2 is easily handled), that k >= (4*n-1)^n, and that either k or k-1 is a multiple of m. Start with a solid cube made up of (4*n-1)^n cells. Remove the central cell if k is even, so that the number of remaining cells is congruent to k (mod m). Since GCD(2^n,2*n) = m, we can remove at most 2*n-1 sets of 2^n equivalent corner cells each, until the number of remaining cells is congruent to k (mod 2*n). The resulting polyhypercube is still connected. Then add sets of 2*n spike cells until the total number of cells is equal to k. This proves the second part. The bound k >= (4*n-1)^n resulting from this construction is far from optimal.

Examples

			Array begins:
  n\k| 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
  ---+-----------------------------------------------------------
   0 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
   1 | 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
   2 | 1  0  0  1  1  0  0  1  2  0  0  3  2  0  0  5  4  0  0 12
   3 | 1  0  0  0  0  0  1  1  0  0  0  0  1  0  0  0  0  1  2  1
   4 | 1  0  0  0  0  0  0  0  1  0  0  0  0  0  0  1  1  0  0  0
   5 | 1  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0
   6 | 1  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0
   7 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0
   8 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0  0
   9 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0
  10 | 1  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
		

Crossrefs

Cf. A013609, A142886 (2nd row), A171977, A330891, A376791 (3rd row).

A383551 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0),(0,1),(3,3).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 21, 15, 6, 1, 1, 7, 21, 37, 37, 21, 7, 1, 1, 8, 28, 59, 76, 59, 28, 8, 1, 1, 9, 36, 88, 138, 138, 88, 36, 9, 1, 1, 10, 45, 125, 230, 282, 230, 125, 45, 10, 1, 1, 11, 55, 171, 360, 522, 522, 360, 171, 55, 11, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2025

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,  1,   1,   1,    1, ...
  1, 2,  3,  4,   5,   6,    7, ...
  1, 3,  6, 10,  15,  21,   28, ...
  1, 4, 10, 21,  37,  59,   88, ...
  1, 5, 15, 37,  76, 138,  230, ...
  1, 6, 21, 59, 138, 282,  522, ...
  1, 7, 28, 88, 230, 522, 1065, ...
		

Crossrefs

Main diagonal gives A376791.

Programs

  • PARI
    a(n, k) = my(x='x+O('x^(n+1)), y='y+O('y^(k+1))); polcoef(polcoef(1/(1-x-y-x^3*y^3), n), k);

Formula

A(n,k) = A(k,n).
A(n,k) = A(n-1,k) + A(n,k-1) + A(n-3,k-3).
G.f.: 1 / (1 - x - y - x^3*y^3).

A376811 Expansion of 1/sqrt(1 - 4*x/(1 - x^3)^2).

Original entry on oeis.org

1, 2, 6, 20, 74, 276, 1044, 3998, 15450, 60128, 235332, 925332, 3652508, 14464490, 57442074, 228670140, 912239782, 3646027752, 14596600800, 58523194734, 234954663396, 944418233612, 3800327339532, 15307785490560, 61716607166724, 249033637247898, 1005661821858414
Offset: 0

Views

Author

Seiichi Manyama, Oct 04 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1-x^3)^2))
    
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-5*k-1, k)*binomial(2*n-6*k, n-3*k));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k-1,k) * binomial(2*n-6*k,n-3*k).
Showing 1-6 of 6 results.