A376808 Number of non-isomorphic colorings of a toroidal n X n grid using any number of swappable colors.
1, 9, 2387, 655089857, 185543613289205809, 106103186941524316132396201360, 218900758256599151027392153440612298654753249, 2689595989958732045849530682270318547733917269644639109073775285
Offset: 1
Keywords
Examples
For the 2x2 we find +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ |X|X| |X|X| |X|X| |X| | |X| | +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ |X|X| |X| | | | | |X| | | |X| +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ +-+-+ |X|Y| |X| | |X| | |X|Y| +-+-+ +-+-+ +-+-+ +-+-+ | | | |Y| | | |Y| |Z| | +-+-+ +-+-+ +-+-+ +-+-+ so a(2) = 9.
References
- F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..24
- Marko Riedel et al., Burnside lemma and translational symmetries of the torus.
- Marko Riedel, Maple code for sequence by PGE.
Formula
a(n) = Sum_{Q=1..n^2} (1/(n^2*Q!))*(Sum_{sigma in S_Q} Sum_{d|n} Sum_{f|n} phi(d) phi(f) [[forall j_l(sigma) > 0 : l|lcm(d,f) ]] P(gcd(d,f)*(n/d)*(n/f), sigma)) where P(F, sigma) = F! [z^F] Product_{l=1..Q} (exp(lz)-1)^j_l(sigma). The notation j_l(sigma) is from the Harary text and gives the number of cycles of length l in the permutation sigma. [[.]] is an Iverson bracket.
Comments