cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A216222 Counting a set of restricted partitions.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 4, 3, 3, 3, 3, 6, 7, 8, 10, 9, 9, 9, 9, 11, 13, 16, 20, 22, 25, 28, 27, 28, 29, 30, 32, 35, 40, 45, 53, 60, 67, 73, 79, 85, 87, 92, 95, 98, 105, 111, 120, 132, 145, 160, 178, 196, 212, 231, 247, 263, 280, 291, 305, 319, 334, 352, 371, 393
Offset: 0

Views

Author

David S. Newman, Mar 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Take[CoefficientList[Sum[x^(k^2)*Product[1 + x^i, {i, k}]^2, {k, 0, 7}], x], 63] (* Giovanni Resta, Mar 13 2013 *)
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*(1 + x^k)*x^(2*k - 1)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p; , {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Oct 09 2024 *)

Formula

G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j)^2 = 1 +x^1*(1+x)^2 +x^4*(1+x)^2*(1+x^2)^2 +...+ x^k^2*(1+x)^2*(1+x^2)^2*(1+x^3)^2*...*(1+x^k)^2+...
a(n) ~ phi^(3/2) * exp(Pi*sqrt(2*n/15)) / (4*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 29 2024

Extensions

a(14)-a(62) from Giovanni Resta, Mar 13 2013

A376812 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^j)^2.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 5, 5, 5, 7, 8, 10, 13, 14, 16, 19, 21, 25, 29, 33, 40, 45, 50, 57, 64, 72, 81, 93, 104, 117, 134, 148, 165, 185, 204, 227, 253, 280, 310, 345, 381, 422, 469, 514, 567, 625, 685, 753, 825, 903, 990, 1086, 1186, 1297, 1419, 1548, 1692, 1845, 2007
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1)/2)*Product[1+x^k, {k, 1, n}]^2, {n, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*(1 + x^k)*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (1 + x^j)^2 * x^j.
a(n) ~ c * A376815^sqrt(n) / sqrt(n), where c = 1/(4*sqrt(3/2 - 2*sinh(arcsinh(3^(3/2)/2)/3)/sqrt(3))) = 0.27647151570071656262813536...

A376852 G.f.: Sum_{k>=0} x^(k*(k+1)) * Product_{j=1..k} ((1 + x^j)/(1 - x^j))^2.

Original entry on oeis.org

1, 0, 1, 4, 8, 12, 17, 24, 36, 56, 88, 136, 205, 300, 428, 600, 828, 1132, 1540, 2084, 2813, 3788, 5080, 6788, 9032, 11952, 15736, 20612, 26852, 34812, 44929, 57732, 73900, 94268, 119852, 151932, 192072, 242172, 304584, 382164, 478364, 597400, 744365, 925384
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k*(k+1)) * Product[(1+x^j)/(1-x^j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(Pi*sqrt(n)) / (2^(9/2) * n).
Showing 1-3 of 3 results.