cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A376815 Decimal expansion of a constant related to the asymptotics of A376812.

Original entry on oeis.org

4, 1, 8, 3, 6, 2, 3, 0, 8, 2, 3, 1, 5, 0, 1, 0, 3, 7, 5, 9, 2, 4, 3, 4, 2, 0, 7, 4, 7, 1, 4, 3, 6, 2, 8, 9, 8, 9, 5, 6, 3, 8, 6, 9, 7, 7, 0, 7, 0, 3, 5, 8, 8, 7, 8, 5, 7, 8, 3, 2, 7, 1, 0, 0, 2, 0, 9, 8, 1, 9, 5, 1, 5, 7, 2, 6, 9, 5, 0, 8, 1, 6, 9, 4, 1, 1, 4, 8, 1, 0, 4, 6, 8, 4, 1, 7, 7, 0, 4, 5, 4, 9, 5, 3, 2
Offset: 1

Views

Author

Vaclav Kotesovec, Oct 05 2024

Keywords

Examples

			4.18362308231501037592434207471436289895638697707035887857832710...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[E^Sqrt[3*Log[r]^2 + 8*PolyLog[2, r^(1/2)] - 2*Pi^2/3] /. r -> (-2 + ((29 - 3*Sqrt[93])/2)^(1/3) + ((29 + 3*Sqrt[93])/2)^(1/3))/3, 10, 120][[1]] (* Vaclav Kotesovec, Oct 07 2024 *)

Formula

Equals limit_{n->infinity} A376812(n)^(1/sqrt(n)).
Equals A376660^2. - Vaclav Kotesovec, Oct 06 2024
Equals exp(sqrt(3*log(r)^2 + 8*polylog(2, r^(1/2)) - 2*Pi^2/3)), where r = A088559 = 0.4655712318767680266567312252199... is the real root of the equation r*(1+r)^2 = 1. - Vaclav Kotesovec, Oct 07 2024

A216222 Counting a set of restricted partitions.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 4, 3, 3, 3, 3, 6, 7, 8, 10, 9, 9, 9, 9, 11, 13, 16, 20, 22, 25, 28, 27, 28, 29, 30, 32, 35, 40, 45, 53, 60, 67, 73, 79, 85, 87, 92, 95, 98, 105, 111, 120, 132, 145, 160, 178, 196, 212, 231, 247, 263, 280, 291, 305, 319, 334, 352, 371, 393
Offset: 0

Views

Author

David S. Newman, Mar 13 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Take[CoefficientList[Sum[x^(k^2)*Product[1 + x^i, {i, k}]^2, {k, 0, 7}], x], 63] (* Giovanni Resta, Mar 13 2013 *)
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*(1 + x^k)*x^(2*k - 1)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p; , {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1] (* Vaclav Kotesovec, Oct 09 2024 *)

Formula

G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^j)^2 = 1 +x^1*(1+x)^2 +x^4*(1+x)^2*(1+x^2)^2 +...+ x^k^2*(1+x)^2*(1+x^2)^2*(1+x^3)^2*...*(1+x^k)^2+...
a(n) ~ phi^(3/2) * exp(Pi*sqrt(2*n/15)) / (4*5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Sep 29 2024

Extensions

a(14)-a(62) from Giovanni Resta, Mar 13 2013

A376813 G.f.: Sum_{k>=0} x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)^2.

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 2, 2, 3, 6, 7, 8, 10, 8, 8, 8, 6, 8, 10, 12, 16, 20, 22, 24, 27, 26, 25, 26, 25, 26, 29, 32, 37, 44, 52, 58, 66, 72, 76, 82, 82, 84, 87, 88, 91, 96, 103, 112, 126, 138, 154, 174, 190, 208, 225, 238, 253, 268, 275, 284, 296, 304
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[1+x^k, {k, 1, n}]^2, {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*(1 + x^k)*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (x^j + x^(2*j))^2.
a(n) ~ phi^(1/2) * exp(Pi*sqrt(2*n/15)) / (4 * 5^(1/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A376853 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} ((1 + x^j)/(1 - x^j))^2.

Original entry on oeis.org

1, 1, 4, 9, 16, 28, 49, 84, 140, 228, 361, 560, 856, 1288, 1916, 2821, 4108, 5928, 8480, 12024, 16920, 23637, 32788, 45196, 61928, 84368, 114332, 154160, 206857, 276308, 367476, 486680, 641996, 843656, 1104592, 1441168, 1873965, 2428816, 3138132, 4042408, 5192132
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k*(k+1)/2) * Product[(1+x^j)/(1-x^j), {j, 1, k}]^2, {k, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * exp(sqrt(8*n*(log(r)^2 + polylog(2,r) - polylog(2,-r)))), where r = A192918 = 0.54368901269207636157... is the real root of the equation r*(1+r^2) = (1-r^2) and c = 0.0643033662740307713580663125340126524175...
Showing 1-4 of 4 results.