cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A376542 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^(2*j))^2.

Original entry on oeis.org

1, 1, 0, 2, 1, 1, 2, 0, 3, 1, 4, 2, 3, 3, 2, 6, 2, 7, 2, 8, 3, 10, 6, 8, 9, 8, 12, 8, 16, 6, 20, 8, 22, 10, 24, 14, 27, 20, 26, 26, 25, 34, 26, 42, 25, 51, 26, 58, 31, 66, 36, 72, 43, 76, 56, 82, 70, 82, 86, 84, 106, 87, 124, 90, 145, 95, 168, 102, 187, 115, 206
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 28 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(k^2)*Product[1+x^(2*j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ A369557(n) / 4.

A376580 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} (1 + x^(2*j-1))^2.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 4, 3, 3, 3, 3, 4, 4, 5, 5, 7, 9, 7, 8, 9, 9, 10, 11, 12, 13, 14, 15, 18, 17, 19, 24, 23, 25, 27, 28, 31, 32, 33, 37, 40, 42, 44, 47, 52, 54, 59, 62, 67, 75, 75, 80, 87, 90, 95, 102, 109, 114, 119, 127, 134, 142, 150, 159, 171, 178, 187, 199, 211
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 29 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=100; CoefficientList[Series[Sum[x^(k^2)*Product[1+x^(2*j-1), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ c * A376621^sqrt(n) / sqrt(n), where c = 1/(2*sqrt(3 - 4*sinh(arcsinh(3^(3/2)/2) / 3) / sqrt(3))) = 0.390989767113799449629...
a(n) ~ c * A376542(n), where c = (108 + 12*sqrt(93))^(1/3)/3 - 4/(108 + 12*sqrt(93))^(1/3) = 1.364655607... is the real root of the equation c*(4 + c^2) = 8.
a(n) ~ c * A369557(n), where c = A347178 = -sinh(log((-3*sqrt(3) + sqrt(31))/2)/3) / sqrt(3) = 0.3411639019... is the real root of the equation 2*c*(1 + 4*c^2) = 1.
a(n) ~ A376631(n) * (A376621/A376660)^sqrt(n).

A376812 G.f.: Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + x^j)^2.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 5, 5, 5, 7, 8, 10, 13, 14, 16, 19, 21, 25, 29, 33, 40, 45, 50, 57, 64, 72, 81, 93, 104, 117, 134, 148, 165, 185, 204, 227, 253, 280, 310, 345, 381, 422, 469, 514, 567, 625, 685, 753, 825, 903, 990, 1086, 1186, 1297, 1419, 1548, 1692, 1845, 2007
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1)/2)*Product[1+x^k, {k, 1, n}]^2, {n, 0, Sqrt[2*nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*(1 + x^k)*x^k]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[2*nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (1 + x^j)^2 * x^j.
a(n) ~ c * A376815^sqrt(n) / sqrt(n), where c = 1/(4*sqrt(3/2 - 2*sinh(arcsinh(3^(3/2)/2)/3)/sqrt(3))) = 0.27647151570071656262813536...

A376813 G.f.: Sum_{k>=0} x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)^2.

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 1, 2, 3, 4, 3, 2, 2, 2, 3, 6, 7, 8, 10, 8, 8, 8, 6, 8, 10, 12, 16, 20, 22, 24, 27, 26, 25, 26, 25, 26, 29, 32, 37, 44, 52, 58, 66, 72, 76, 82, 82, 84, 87, 88, 91, 96, 103, 112, 126, 138, 154, 174, 190, 208, 225, 238, 253, 268, 275, 284, 296, 304
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[1+x^k, {k, 1, n}]^2, {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Expand[p*(1 + x^k)*(1 + x^k)*x^(2*k)]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

G.f.: Sum_{k>=0} Product_{j=1..k} (x^j + x^(2*j))^2.
a(n) ~ phi^(1/2) * exp(Pi*sqrt(2*n/15)) / (4 * 5^(1/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A376854 G.f.: Sum_{k>=0} x^(k^2) * Product_{j=1..k} ((1 + x^j)/(1 - x^j))^2.

Original entry on oeis.org

1, 1, 4, 8, 13, 20, 32, 52, 84, 133, 204, 304, 444, 636, 900, 1264, 1761, 2440, 3364, 4608, 6276, 8496, 11424, 15268, 20284, 26789, 35196, 46016, 59884, 77612, 100204, 128900, 165260, 211200, 269072, 341792, 432917, 546788, 688728, 865200, 1084048, 1354816, 1689048
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 06 2024

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^(k^2) * Product[(1+x^j)/(1-x^j), {j, 1, k}]^2, {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x]

Formula

a(n) ~ (1 + sqrt(2)) * exp(Pi*sqrt(n)) / (2^(9/2) * n).
Showing 1-5 of 5 results.