cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A294687 Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly five colors under translational symmetry, 1 <= k <= n.

Original entry on oeis.org

0, 0, 0, 0, 300, 92680, 0, 15750, 13794150, 8221452750, 24, 510312, 1686135376, 4495236798162, 11696087875731720, 300, 13794450, 193054017440, 2425003938178050, 30852000867277668428, 403564024914127655401650, 2400, 343501500, 21664357535320, 1317601563731383350, 82985159653854019928352, 5411356249329837891442095560
Offset: 1

Views

Author

Marko Riedel, Nov 06 2017

Keywords

Comments

Colors are not being permuted, i.e., Power Group Enumeration does not apply here.

Examples

			Triangle begins:
   0;
   0,      0;
   0,    300,      92680;
   0,  15750,   13794150,    8221452750;
  24, 510312, 1686135376, 4495236798162, 11696087875731720;
  ...
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Main diagonal is A376825.

Programs

  • PARI
    T(n,m)=my(k=5); k!*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d,e), k, 2) ))/(n*m) \\ Andrew Howroyd, Oct 05 2024

Formula

T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=5 and S(n,k) Stirling numbers of the second kind.

A376822 Number of colorings of a toroidal n X n grid using exactly two colors under translational symmetry.

Original entry on oeis.org

0, 5, 62, 4154, 1342206, 1908897150, 11488774559742, 288230376353050814, 29850020237398264483838, 12676506002282327791964489726, 21970710674130840874443091905462270, 154866286100907105149651981766316633972734, 4427744605404865645682169434028029029963535286270
Offset: 1

Views

Author

Andrew Howroyd, Oct 05 2024

Keywords

Crossrefs

Main diagonal of A294684.
Cf. A179043, A376747 (colors permutable), A376823, A376824, A376825.

Formula

a(n) = A179043(n) - 2.

A376823 Number of colorings of a toroidal n X n grid using exactly three colors under translational symmetry.

Original entry on oeis.org

0, 9, 2022, 2679246, 33887517990, 4169289730628814, 4883659745750360600262, 53651309691205903304049168186, 5474401089420129832016444491921748358, 5153775207320113272335114827748860107542139918, 44553974378043749018442678682265335735181851572329684070
Offset: 1

Views

Author

Andrew Howroyd, Oct 05 2024

Keywords

Crossrefs

Main diagonal of A294685.
Cf. A179043, A184278, A376748 (colors permutable), A376822, A376824, A376825.

Formula

a(n) = A184278(n) - 3*A179043(n) + 3.

A376824 Number of colorings of a toroidal n X n grid using exactly four colors under translational symmetry.

Original entry on oeis.org

0, 6, 20720, 257706024, 44900438149488, 131160169581733489616, 6467585568566200114362823920, 5316911768534424725926923896066891424, 72172920340122292837562997014593985220649867760, 16069380442569287654590340470284256047904187412954757496784
Offset: 1

Views

Author

Andrew Howroyd, Oct 05 2024

Keywords

Crossrefs

Main diagonal of A294686.
Cf. A179043, A184272, A184278, A376749 (colors permutable), A376822, A376823, A376825.

Formula

a(n) = A184272(n) - 4*A184278(n) + 6*A179043(n) - 4.
Showing 1-4 of 4 results.