cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376826 Array read by antidiagonals: T(n,k) = n! * [x^n] exp(2*x + (k/2)*x^2), n >= 0, k >= 0.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 5, 8, 1, 2, 6, 14, 16, 1, 2, 7, 20, 43, 32, 1, 2, 8, 26, 76, 142, 64, 1, 2, 9, 32, 115, 312, 499, 128, 1, 2, 10, 38, 160, 542, 1384, 1850, 256, 1, 2, 11, 44, 211, 832, 2809, 6512, 7193, 512, 1, 2, 12, 50, 268, 1182, 4864, 15374, 32400, 29186, 1024
Offset: 0

Views

Author

Andrew Howroyd, Oct 07 2024

Keywords

Examples

			Array begins:
======================================================
n\k |   0    1    2     3     4     5     6      7 ...
----+-------------------------------------------------
  0 |   1    1    1     1     1     1     1      1 ...
  1 |   2    2    2     2     2     2     2      2 ...
  2 |   4    5    6     7     8     9    10     11 ...
  3 |   8   14   20    26    32    38    44     50 ...
  4 |  16   43   76   115   160   211   268    331 ...
  5 |  32  142  312   542   832  1182  1592   2062 ...
  6 |  64  499 1384  2809  4864  7639 11224  15709 ...
  7 | 128 1850 6512 15374 29696 50738 79760 118022 ...
     ...
		

Crossrefs

Programs

  • PARI
    T(n,k) = {sum(i=0, n\2, binomial(n,2*i) * 2^(n-2*i) * k^i * (2*i)!/(2^i*i!))}

Formula

E.g.f. of column k: exp(2*x + k*x^2/2).
Column k is the binomial transform of column k of A359762.
T(n,k) = Sum_{i=0..floor(n/2)} binomial(n,2*i) * 2^(n-2*i) * k^i * (2*i-1)!!.
T(n,k) = Sum_{i=0..floor(n/2)} 2^(n-3*i) * k^i * n! / ((n-2*i)! * i!).