cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376827 T(n, k) = binomial(n, k)*hypergeom([(1 - n)/2, -n/2], [1], 4).

Original entry on oeis.org

1, 1, 1, 3, 6, 3, 7, 21, 21, 7, 19, 76, 114, 76, 19, 51, 255, 510, 510, 255, 51, 141, 846, 2115, 2820, 2115, 846, 141, 393, 2751, 8253, 13755, 13755, 8253, 2751, 393, 1107, 8856, 30996, 61992, 77490, 61992, 30996, 8856, 1107
Offset: 0

Views

Author

Peter Luschny, Oct 05 2024

Keywords

Examples

			[0]    1;
[1]    1,    1;
[2]    3,    6,     3;
[3]    7,   21,    21,     7;
[4]   19,   76,   114,    76,    19;
[5]   51,  255,   510,   510,   255,    51;
[6]  141,  846,  2115,  2820,  2115,   846,   141;
[7]  393, 2751,  8253, 13755, 13755,  8253,  2751,  393;
[8] 1107, 8856, 30996, 61992, 77490, 61992, 30996, 8856, 1107;
		

Crossrefs

Cf. A002426 (column 0 and main diagonal), A098453 (row sums).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*hypergeom([(1 - n)/2, -n/2], [1], 4): seq(seq(simplify(T(n, k)), k = 0..n), n = 0..8);
  • Mathematica
    A376827[n_, k_] := Binomial[n, k]*Hypergeometric2F1[(1-n)/2, -n/2, 1, 4];
    Table[A376827[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Oct 21 2024 *)

Formula

T(n, k) = binomial(n, k)* A002426(n). - Detlef Meya, Oct 11 2024