A376827 T(n, k) = binomial(n, k)*hypergeom([(1 - n)/2, -n/2], [1], 4).
1, 1, 1, 3, 6, 3, 7, 21, 21, 7, 19, 76, 114, 76, 19, 51, 255, 510, 510, 255, 51, 141, 846, 2115, 2820, 2115, 846, 141, 393, 2751, 8253, 13755, 13755, 8253, 2751, 393, 1107, 8856, 30996, 61992, 77490, 61992, 30996, 8856, 1107
Offset: 0
Examples
[0] 1; [1] 1, 1; [2] 3, 6, 3; [3] 7, 21, 21, 7; [4] 19, 76, 114, 76, 19; [5] 51, 255, 510, 510, 255, 51; [6] 141, 846, 2115, 2820, 2115, 846, 141; [7] 393, 2751, 8253, 13755, 13755, 8253, 2751, 393; [8] 1107, 8856, 30996, 61992, 77490, 61992, 30996, 8856, 1107;
Links
- Paolo Xausa, Table of n, a(n) for n = 0..11475 (rows 0..150 of triangle, flattened).
Programs
-
Maple
T := (n, k) -> binomial(n, k)*hypergeom([(1 - n)/2, -n/2], [1], 4): seq(seq(simplify(T(n, k)), k = 0..n), n = 0..8);
-
Mathematica
A376827[n_, k_] := Binomial[n, k]*Hypergeometric2F1[(1-n)/2, -n/2, 1, 4]; Table[A376827[n, k], {n, 0, 10}, {k, 0, n}] (* Paolo Xausa, Oct 21 2024 *)
Formula
T(n, k) = binomial(n, k)* A002426(n). - Detlef Meya, Oct 11 2024