cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376863 Triangle of generalized Stirling numbers of the lower level of the hierarchy (section m=1).

Original entry on oeis.org

1, 3, 1, 13, 7, 1, 73, 50, 12, 1, 501, 400, 125, 18, 1, 4051, 3609, 1335, 255, 25, 1, 37633, 36463, 15214, 3485, 460, 33, 1, 394353, 408694, 186949, 48769, 7805, 763, 42, 1, 4596553, 5036792, 2479602, 714364, 131299, 15708, 1190, 52, 1, 58941091, 67714809, 35419350, 11045558, 2256933, 312375, 29190, 1770, 63, 1, 824073141, 986271823, 543025851, 180766890, 40194965, 6221397, 676893, 50970, 2535, 75, 1
Offset: 0

Views

Author

Keywords

Examples

			Triangle starts:
[0]        1;
[1]        3,        1;
[2]       13,        7,        1;
[3]       73,       50,       12,       1;
[4]      501,      400,      125,      18,       1;
[5]     4051,     3609,     1335,     255,      25,       1;
[6]    37633,    36463,    15214,    3485,     460,      33,      1;
[7]   394353,   408694,   186949,   48769,    7805,     763,     42,    1;
[8]  4596553,  5036792,  2479602,  714364,  131299,   15708,   1190,   52,     1;
		

Crossrefs

A000262 (column 0), A052852 (row sums).
Triangle for m=0: A130534.

Programs

  • Maple
    T:=(m,n,k)->add(add(Stirling1(n-j,k)*binomial(n+m,i)*binomial(n,j)*binomial(j,i)*i!*m^(j-i), j=i..n),i=0..n):m:=1:seq(seq(T(m,n,k),k=0..n),n=0..10);

Formula

T(m, n, k) = Sum_{i=0..n} Sum_{j=i..n} Stirling1(n-j, k) * binomial(n+m, i) * binomial(n, j)* binomial(j, i) * i! * m^(j - i), for m = 1.