A376870 Reduced numerators of Newton's iteration for 1/sqrt(3), starting with 1/3.
1, 4, 130, 2739685, 21055737501685791580, 9337539302589041654242365815942422114384262970589593842110
Offset: 0
Examples
a(1) = 4 because b(1) = (3/2)*(1/3)*(1 - 1/9) = 4/9. 1/3, 4/9, 130/243, 2739685/4782969, ... = A376870(n)/(3*A134799(n)).
Links
- Paolo Xausa, Table of n, a(n) for n = 0..7
- X. Gourdon and P. Sebah, Pythagoras' Constant.
Programs
-
Mathematica
Module[{n = 0}, NestList[#*(3^(3^n++ + 1) - #^2)/2 &, 1, 6]] (* Paolo Xausa, Oct 17 2024 *)
-
Python
from itertools import count, islice def A376870_gen(): # generator of terms p = 1 for k in count(0): yield p p = p*(3**(3**k+1)-p**2)>>1 A376870_list = list(islice(A376870_gen(),6)) # Chai Wah Wu, Oct 11 2024
Formula
a(n) is the reduced numerator of b(n) = (3/2)*b(n-1)*(1 - b(n-1)^2); b(0) = 1/3.
a(n+1) = a(n)*(3^(3^n+1)-a(n)^2)/2. - Chai Wah Wu, Oct 11 2024
Comments