cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A376875 Decimal expansion of ((1 + 1/a)*exp(-a) + (1 - 1/a)*exp(a))*sqrt(12/121) where a = Pi*sqrt(11/36).

Original entry on oeis.org

8, 4, 5, 8, 2, 4, 1, 0, 9, 5, 0, 6, 4, 9, 6, 8, 4, 6, 9, 9, 4, 6, 5, 3, 7, 7, 9, 8, 4, 7, 9, 5, 2, 1, 7, 0, 5, 8, 6, 7, 3, 2, 9, 9, 5, 0, 9, 7, 3, 1, 5, 0, 3, 7, 4, 1, 2, 8, 0, 6, 3, 5, 8, 3, 9, 1, 3, 9, 6, 2, 3, 2, 2, 5, 8, 0, 3, 0, 5, 0, 9, 5, 8, 7, 5, 1, 6, 5
Offset: 0

Views

Author

Peter Luschny, Oct 08 2024

Keywords

Examples

			0.8458241095064968469946537798479521705867329950973150...
		

Programs

  • Maple
    a := Pi*sqrt(11/36): c := ((1 + 1/a)*exp(-a) + (1 - 1/a)*exp(a))*sqrt(12/121):
    Digits := 110: evalf(c, Digits)*10^94: ListTools:-Reverse(convert(floor(%), base, 10));
  • Mathematica
    First[RealDigits[((1 + 1/#)*Exp[-#] + (1 - 1/#)*Exp[#])*Sqrt[12/121] & [Pi*Sqrt[11/36]], 10, 100]] (* Paolo Xausa, Feb 26 2025 *)

Formula

Equals (4*sqrt(3/11)*(sqrt(11)*Pi*cosh((sqrt(11)*Pi)/6) - 6*sinh((sqrt(11)*Pi)/6)))/(11*Pi).