A376950 Smallest prime p such that x^n + x + 1 splits modulo p.
3, 31, 193, 211, 4339, 41143, 20347, 8196919, 152305817, 1741273, 8262307441, 853465946651, 52120172761
Offset: 2
Examples
a(4) = 193 because x^4 + x + 1 has an irreducible factor of degree > 1 modulo all primes less than 193, but splits as (x + 135)(x + 145)(x + 148)(x + 151) modulo 193.
Links
- Ernst S. Selmer, On the irreducibility of certain trinomials, Mathematica Scandinavica 4 (1956), 287-302.
Crossrefs
Cf. A377496.
Programs
-
Maple
f:= proc(n) local P,F,p,x; P:= x^n+x+1; p:= 1; do p:= nextprime(p); F:= map(degree,(Factors(P) mod p)[2][..,1],x); if max(F) = 1 then return p fi od end proc: map(f, [$2..8]); # Robert Israel, Oct 10 2024
-
Mathematica
a[n_] := Module[{i}, For[i = 1, True, i++, If[Total[Last /@ Rest[FactorList[x^n + x + 1, Modulus -> Prime[i]]]] == n, Return[Prime[i]]; ] ] ]; a /@ Range[2, 8]
Comments