A377016 Semiperimeter of the unique primitive Pythagorean triple whose short leg is A002315(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
1, 28, 861, 28680, 970921, 32963140, 1119662181, 38034888528, 1292062686481, 43892073946540, 1491038320325421, 50651410052600280, 1720656899012149561, 58451683130389395028, 1985636569382856677301, 67453191675004485098400, 2291422880375627492063521, 77840924741066359629967420
Offset: 0
Examples
For n=2, the short leg is A002315(2) = 41 and the hypotenuse is A008844(n) = 841 so the semiperimeter is then a(2) = (41 + 840 + 841)/2 = 861.
References
- Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2024.
Links
- Index entries for linear recurrences with constant coefficients, signature (41,-246,246,-41,1).
Programs
-
Mathematica
s[n_]:=s[n]=Module[{a, b},a=((1+Sqrt[2])^(2n+1)-(Sqrt[2]-1)^(2n+1))/2;b=(a^2-1)/2;{(a+2b+1)/2}];semis={};Do[semis=Join[semis,FullSimplify[s[n]]],{n,0,17}];semis
-
PARI
Vec((1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)) + O(x^20)) \\ Andrew Howroyd, Oct 14 2024
Formula
G.f.: (1 - 13*x - 41*x^2 + 21*x^3)/((1 - 34*x + x^2)*(1 - 6*x + x^2)*(1 - x)). - Andrew Howroyd, Oct 14 2024
Comments