A377023 Decimal expansion of the asymptotic constant of the product of binomial coefficients in a row of Pascal's triangle.
6, 0, 3, 6, 4, 8, 6, 7, 6, 0, 3, 6, 0, 1, 0, 3, 1, 9, 6, 7, 0, 7, 0, 2, 1, 1, 8, 0, 4, 2, 0, 5, 2, 6, 8, 3, 0, 6, 7, 0, 4, 4, 6, 3, 0, 4, 0, 7, 0, 1, 7, 0, 0, 7, 4, 0, 5, 8, 5, 8, 0, 3, 6, 2, 1, 9, 1, 7, 7, 8, 3, 7, 5, 6, 0, 3, 3, 9, 6, 7, 0, 6, 5, 4, 9, 7, 3, 0, 3, 7, 2, 3, 0, 1, 3, 5, 7, 4, 0, 0, 0, 5, 7, 9, 0
Offset: 0
Examples
0.60364867603601031967070211804205268306704463040701700740585803621917783756033...
Links
- Bernd C. Kellner, Table of n, a(n) for n = 0..10000
- Bernd C. Kellner, On asymptotic constants related to products of Bernoulli numbers and factorials, Integers 9 (2009), Article #A08, 83-106; alternative link; arXiv:0604505 [math.NT], 2006.
- Bernd C. Kellner, Asymptotic products of binomial and multinomial coefficients revisited, Integers 24 (2024), Article #A59, 10 pp.; arXiv:2312.11369 [math.CO], 2023.
Programs
-
Maple
exp(1/12-2*Zeta(1, -1))/(2*Pi)^(1/2); evalf(%, 100);
-
Mathematica
RealDigits[Glaisher^2/(Exp[1/12] (2 Pi)^(1/2)), 10, 100][[1]]
-
PARI
default(realprecision, 100); exp(1/12-2*zeta'(-1))/(2*Pi)^(1/2)
-
Sage
import mpmath mpmath.mp.pretty = True; mpmath.mp.dps = 100 mpmath.exp(1/12-2*mpmath.zeta(-1, 1, 1))/(2*pi)^(1/2)
Comments