cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A377156 Numbers k such that the set of divisors of k that are Zumkeller numbers can be partitioned into two disjoint subsets with equal sum.

Original entry on oeis.org

120, 168, 240, 336, 432, 480, 528, 624, 660, 672, 780, 864, 924, 960, 1020, 1056, 1092, 1140, 1248, 1260, 1296, 1320, 1344, 1380, 1428, 1560, 1596, 1632, 1728, 1740, 1760, 1800, 1824, 1848, 1920, 1932, 2040, 2080, 2100, 2112, 2184, 2208, 2280, 2436, 2464, 2496, 2520, 2592
Offset: 1

Views

Author

Ivan N. Ianakiev, Oct 18 2024

Keywords

Comments

If k is a term, then so is 2k.
Below 6000 terms which are not Zumkeller are: 1296, 1800, 2592, 3528, 3600, 4050, 5184.

Examples

			The set D of the divisors of 120 that are Zumkeller numbers is {6,12,20,24,30,40,60,120}. D = {6,30,120} union {12,20,24,40,60}, so 120 is a term.
		

Crossrefs

Cf. A083207.

Programs

  • Mathematica
    zQ[n_]:=Module[{d=Divisors[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False,
    t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]];
    zDiv[n_]:= Select[Divisors[n],zQ]; myQ[n_]:=Select[Subsets[zDiv[n]], #!={}&&EvenQ[(Plus@@zDiv[n])/2]&&Plus@@#==(Plus@@zDiv[n])/2&,1]!={};
    Select[Range[336],myQ] (* zQ by T. D. Noe at A083207 *)
    (* second program *)
    zumQ[n_] := zumQ[n] = Module[{d = Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; q[n_] := Module[{d = Select[Divisors[n], zumQ], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[2600], q] (* Amiram Eldar, Oct 19 2024 *)

Extensions

More terms from Amiram Eldar, Oct 19 2024