A377156 Numbers k such that the set of divisors of k that are Zumkeller numbers can be partitioned into two disjoint subsets with equal sum.
120, 168, 240, 336, 432, 480, 528, 624, 660, 672, 780, 864, 924, 960, 1020, 1056, 1092, 1140, 1248, 1260, 1296, 1320, 1344, 1380, 1428, 1560, 1596, 1632, 1728, 1740, 1760, 1800, 1824, 1848, 1920, 1932, 2040, 2080, 2100, 2112, 2184, 2208, 2280, 2436, 2464, 2496, 2520, 2592
Offset: 1
Keywords
Examples
The set D of the divisors of 120 that are Zumkeller numbers is {6,12,20,24,30,40,60,120}. D = {6,30,120} union {12,20,24,40,60}, so 120 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A083207.
Programs
-
Mathematica
zQ[n_]:=Module[{d=Divisors[n],t,ds,x},ds=Plus@@d;If[Mod[ds,2]>0,False, t=CoefficientList[Product[1+x^i,{i,d}],x];t[[1+ds/2]]>0]]; zDiv[n_]:= Select[Divisors[n],zQ]; myQ[n_]:=Select[Subsets[zDiv[n]], #!={}&&EvenQ[(Plus@@zDiv[n])/2]&&Plus@@#==(Plus@@zDiv[n])/2&,1]!={}; Select[Range[336],myQ] (* zQ by T. D. Noe at A083207 *) (* second program *) zumQ[n_] := zumQ[n] = Module[{d = Divisors[n], sum, x}, sum = Plus @@ d; EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; q[n_] := Module[{d = Select[Divisors[n], zumQ], sum, x}, sum = Plus @@ d; sum > 0 && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] > 0]; Select[Range[2600], q] (* Amiram Eldar, Oct 19 2024 *)
Extensions
More terms from Amiram Eldar, Oct 19 2024
Comments