cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A377186 Expansion of 1/(1 - 4*x^2 - 4*x^3)^(3/2).

Original entry on oeis.org

1, 0, 6, 6, 30, 60, 170, 420, 1050, 2660, 6552, 16380, 40362, 99792, 245520, 603372, 1480050, 3624192, 8863712, 21647340, 52811616, 128700000, 313341756, 762206016, 1852565650, 4499346072, 10919990460, 26485897932, 64201490352, 155536089240, 376606931436
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( 1/(1 - 4*x^2 - 4*x^3)^(3/2))); // Vincenzo Librandi, May 11 2025
  • Mathematica
    Table[Sum[(2*k+1)*Binomial[2*k,k]*Binomial[k,n-2*k],{k,0,Floor[n/2]}],{n,0,30}] (* Vincenzo Librandi, May 11 2025 *)
  • PARI
    a(n) = sum(k=0, n\2, (2*k+1)*binomial(2*k, k)*binomial(k, n-2*k));
    

Formula

a(0) = 1, a(1) = 0, a(2) = 6; a(n) = (4*(n+1)*a(n-2) + 2*(2*n+3)*a(n-3))/n.
a(n) = Sum_{k=0..floor(n/2)} (2*k+1) * binomial(2*k,k) * binomial(k,n-2*k).

A377189 Expansion of 1/(1 - 4*x^2 - 4*x^3)^(5/2).

Original entry on oeis.org

1, 0, 10, 10, 70, 140, 490, 1260, 3570, 9660, 25872, 69300, 182490, 480480, 1252680, 3255252, 8412690, 21655920, 55535480, 141921780, 361577216, 918529040, 2327337740, 5882631040, 14836032770, 37339221192, 93794645700, 235186913780, 588736957920, 1471462327160
Offset: 0

Views

Author

Seiichi Manyama, Oct 19 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\2, (-4)^k*binomial(-5/2, k)*binomial(k, n-2*k));

Formula

a(0) = 1, a(1) = 0, a(2) = 10; a(n) = (4*(n+3)*a(n-2) + 2*(2*n+9)*a(n-3))/n.
a(n) = Sum_{k=0..floor(n/2)} (-4)^k * binomial(-5/2,k) * binomial(k,n-2*k).
Showing 1-2 of 2 results.