A377217 Expansion of the o.g.f. A(x) defined by [x^n] A(x)^(6*n) = (3*n)!/n!^3 for n >= 0.
1, 1, 2, 14, 127, 1364, 16219, 206715, 2770342, 38567069, 553153830, 8126285739, 121758839828, 1854687918895, 28649693078544, 447912211497740, 7076246388778874, 112821090561117084, 1813395701702453669
Offset: 0
Links
- Romeo Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], (2011).
Programs
-
Maple
Order := 25: E(x) := exp(add((3*n)!/n!^3 * x^n/n, n = 1..25)): solve(series(x*E(x),x) = y, x): convert(%, polynom): g := taylor(y/%, y = 0, 25): seq(coeftayl(g^(1/6), y = 0, n), n = 0..20);
Formula
O.g.f.: A(x) = ( x/(x * series_reversion(E(x)))^(1/6), where E(x) = exp(Sum_{n >= 1} (3*n)!/n!^3 *x^n/n) is the o.g.f. of A229451.
Comments